

A Model Checking Perspective on
White-Box Testing

Helmut Veith
Technische Universität Wien

veith@forsyte.at

Students and Collaborators

Andreas Holzer (Toronto)
Michael Tautschnig (Queen Mary)
Christian Schallhart (Google)

Azadeh Farzan (Toronto)
Niloofar Razavi (Toronto)
Visar Januzaj (Darmstadt)
Stefan Kugele (Munich)
Boris Langer (Diehl Aerospace)

Raimund Kirner (Hertfordshire)

 3

DFG / FWF

National Research Network (FWF)

Main Publications on Testing 2008-2013
Dirk Beyer, Andreas Holzer, Michael Tautschnig, Helmut Veith: Information Reuse for

Multi-goal Reachability Analyses. ESOP 2013: 472-491

Andreas Holzer, Christian Schallhart, Michael Tautschnig, Helmut Veith: On the Structure

and Complexity of Rational Sets of Regular Languages. FSTTCS 2013: 377-388

Azadeh Farzan, Andreas Holzer, Niloofar Razavi, Helmut Veith: Con2colic testing.

ESEC/SIGSOFT FSE 2013: 37-47

Andreas Holzer, Visar Januzaj, Stefan Kugele, Boris Langer, Christian Schallhart, Michael

Tautschnig, Helmut Veith: Seamless Testing for Models and Code. FASE 2011: 278-
293

Andreas Holzer, Michael Tautschnig, Christian Schallhart, Helmut Veith: An Introduction to

Test Specification in FQL. Haifa Verification Conference 2010: 9-22

Andreas Holzer, Christian Schallhart, Michael Tautschnig, Helmut Veith: How did you

specify your test suite. ASE 2010: 407-416

Andreas Holzer, Christian Schallhart, Michael Tautschnig, Helmut Veith: Query-Driven

Program Testing. VMCAI 2009: 151-166

Andreas Holzer, Christian Schallhart, Michael Tautschnig, Helmut Veith: FShell: Systematic

Test Case Generation for Dynamic Analysis and Measurement. CAV 2008: 209-213

4

Model Checking and Testing

Theoretical Background
How we came to work on Testing

Undecidability (of Verification)

Incompleteness.

Non-elementary complexity.

NP-completeness.

Plains of Theoretical Computer Science

7

Turing's Quote on Program Verification

“How can one check a routine in the sense of
making sure that it is right?”

“The programmer should make a number of
definite assertions which can be checked

individually, and from which the correctness of

the whole program easily follows.”

 Quote by A. M. Turing on 24 June 1949 at the inaugural conference
of the EDSAC computer at the Mathematical Laboratory, Cambridge.

 “ the first open admission of the

 software crisis.”

(Dijkstra, The Humble Programmer)

Garmisch-Partenkirchen 1968
NATO Conference on Software Engineering

Dijkstra’s Turing Award Lecture 1972

9

The only effective way to raise the confidence level of a program
significantly is to give a convincing proof of its correctness.

By definition this approach is only applicable when we restrict ourselves
to intellectually manageable programs

Limitations of Human Reasoning

Lines of Code in Modern Computer Programs

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

100 km
printout

Expected Errors per 10.000 Lines = 500m
250 Errors (typical software)
20 Errors (good software)
1 Error (space shuttle quality)

Software Model Checking

critical property

program

executable

compilation

model checking

Property violations documented
by program traces ! I know a bug when I see it.

code assertions
absence of deadlocks
termination
correct API use
path feasibility
memory violations
safety & liveness

Software Model Checking

critical property

program

executable

compilation

model checking

Property violations documented
by program traces ! I know a bug when I see it.

Software Model Checking Paradigms

�Predicate abstraction
overapproximation of the state space

Formal evidence for unreachability, spurious
counterexamples due to abstract semantics
e.g. SLAM (MSR), BLAST (Berkeley), CPA (Passau)

�Bounded Model Checking
underapproximation of the state space

Formal evidence for reachability, precise semantics,
bounded size counterexamples e.g. CBMC (Kröning)

de facto combined using SAT / SMT solvers

15

 Predicate Abstraction

Memory

State
Memory

State
Memory

State
Memory

State
Memory

State
Memory

State
Memory

State
Memory

State

Abstraction

Abstract memory states are formulas
describing properties of the memory content.

Graf, Saidi 1997

(x ¸ y) Æ (z + 5 < y)

Memory

State Memory

State Memory

State Memory

State Memory

State Memory

State Memory

State Memory

State

Memory

State Memory

State Memory

State Memory

State Memory

State Memory

State Memory

State Memory

State

► Decision procedures, SAT solver, SMT, …
► Need for classical logic!

M
System

Mh Initial Abstraction Function

CEGAR (Counterexample-Guided Abstraction Refinement)

Adaptive Strategy

M
System

Mh Initial Abstraction Function

SPURIOUS

Abstract Counterexample

Refinement required.

CEGAR (Counterexample-Guided Abstraction Refinement)

Adaptive Strategy

Check if counterexample is feasible: SAT / SMT solver
Refinement: Craig Interpolation

M
System

Refined Abstraction

Refined Abstraction

Mh Initial Abstraction Function

Validation or
Counterexample Correct !

CEGAR (Counterexample-Guided Abstraction Refinement)

Adaptive Strategy

Check if counterexample is feasible: SAT / SMT solver
Refinement: Craig Interpolation

SAT/SMT for path feasibility

i. Choose a program path
ii. Convert to single static assignment form
iii. Replace if-then-else by assume:

if (x > 5) then A assume(!(x>5));
else B B;

iv. Extract a formula representing the path
x1=x0+5; assume(!(x1>5)); x2 = x1-5;

 (x1=x0+5) & (!(x1>5)) & (x2 = x1-5)

v. Logical satisfiability of the formula = feasibility of the path

Iidealizing assumption: SMT is a reliable oracle.

Software Model Checking

Spec

Abstract
Counterexample

Yes / No

► 2000s: development of industrial strength C model checkers
► “ rivals theorem proving for many verification tasks” (Rushby)
► ÆMicrosoft product for Windows device driver verification

Model Checker

Static
Analysis

Abstract
Model

Counterexample
Analysis

Counterexample

C Code

spurious

good

SMT
SAT

Bill Gates 2002 on SW Model Checking

22

“device drivers we’re building tools that do actual proofs about the
software and how it works in order to guarantee the reliability.”

Dijkstra’s Turing Award Lecture 1972

23

“Model checking is an acceptable crutch.”

Dijkstra’s Turing Award Lecture 1972

24

“Program testing can be a very effective way to show the presence of bugs,
but it is hopelessly inadequate for showing their absence.”

Bill Gates 2002 on SW Model Checking

25

“device drivers we’re building tools that do actual proofs about the
software and how it works in order to guarantee the reliability.”

Reduction of Model Checking to Testing

26

MC specification: no assertions are violated
AG(pc=l → assertion)

Program rewrite
assert(F) if (!F) goto err;

Testing for coverage of err (or basic block coverage)
test case covering err = counterexample

Disadvantage
� assumes perfect test case generation
� similar to perfect oracle for path feasibility

 high level programming language

 executable

 hardware

“The purpose of abstraction is not to be vague, but to create a new semantic
level in which one can be absolutely precise. [Dijkstra, Turing Award Lecture]”

compilation

execution

 high level model

synthesis / implementation

We are not there yet.

Execution time.
Power consumption.
Processor bugs.
Production errors.

Compiler errors.

Proper semantics ?

Testing

FORTAS 2008-2011 (DFG/FWF)

Execution time analysis in
a white box setting

• C source code
• Focus on automatically

generated code
Abstracts from platform
Execution times obtained

through measurements
Requires large data sets,

possibly with code
coverage

Source
Code

Expected Time System

(jointly with Real Time Systems Group, TU Vienna)

Reduction of Testing to Model Checking

29

Test goal: Cover line 4242 of the program.

Model Checking Specification: AG(pc != 4242)

Property correct: line 4242 is dead code
Counterexample: trace leading to line 4242

Disadvantages
� one model checking call per test goal
� redundant calls
� does not scale to large programs
� no support for coverage criteria beyond simple test goals

„Condition Coverage“

cover all program conditions

Precision of Coverage Criteria

1 void foo(int x) {
2 int a = x > 2 && x < 5;
3 if (a) { 0; } else { 1; }
4 }

Test suite
 x =1; x = 4

Condition coverage ?

Commercial Tools
Coverage Meter, CTC++ 100% coverage
BullseyeCoverage 83% coverage

There is no general purpose formalism for white box
test case specification !

Is there a systematic way to specify
coverage criteria and leverage model
checking for test case generation?

Query-Driven Test Case Generation

32

Query-Driven Program Testing

Programs as Databases

Coverage
Criterion Program

Test Input
Generator

Test Suite

Query Database
Database

Engine

Query Result

FQL
Query

C Source
Code

FShell
CPA-Tiger

Separation of Concerns

Æ clean semantics
Æ multiple engines
Æ query dispatcher
Æ stable query interface

Vision

SQL for Test Specifications

Query-Driven Test Case Generation

I. Test Specification Language FQL

II. Test Case Generation Backends

a. FShell: Based on CBMC / SAT
b. CPA-Tiger: Based on CPA / abstraction

III. FQL Theoretical Background

� Test Case Generation
(generic and ad hoc coverage criteria)

� Systematic Reasoning about Test Specifications
(Optimization, Subsumption etc.) cf. database theory

� Certification & Coverage Evaluation
e.g. measure coverage achieved by existing test suite

� Requirement-Driven Testing
translate requirements into FQL

FQL Design Challenge
Usage Scenarios

FQL Design Challenge
Language Design Principles

Precise Semantics

Expressive Power

small number of orthogonal concepts suffice to express large classes of
specifications

Simplicity and Code Independence

tool for the working programmer
simple specs easily expressible
relative stability during code refactoring

Encapsulation of Language Specifics
easily adaptable to a large class of imperative programming languages

Tool Support for Real World Code

test case generation engines

SQL/Database Analogy

FQL Design Challenge
More Language Desiderata

FQL should capture
� Syntax of the program
� Semantics of the program
� Reasonably language independent

User friendly:
� Easy to write
� Easy to understand
� Natural to use
� Predictable performance

Logic and Algorithms
� High expressive power
� Tractable to evaluate

„for each basic block in the program
 there is a test case in the test suite
 which covers the basic block“

1. Specifies a test suite, i.e., multiple test cases
2. Contains a universal quantifier
3. Assumes knowledge about programs.

What IS a basic block for a logic ?
4. Has a meaning independent of the program under test.

Can be translated into concrete specifications for a fixed
program.

FQL Challenge
Example: Basic Block Coverage

FQL

Program Executions as Regular Expressions

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

Line 1.Line 2.Line 3.Line 4.Line 5.Line 8.Line 9.Line 10

38

FQL

Program Executions as Regular Expressions

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

Line 1.Line 2.Line 3.Line 4.Line 5.Line 8.Line 9.Line 10

39

FQL

Program Executions as Regular Expressions

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

Line 1.Line 2.Line 3.Line 4.Line 5.Line 8.Line 9.Line 10

40

FQL

Program Executions as Regular Expressions

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

Line 1.Line 2.Line 3.Line 4.Line 5.Line 8.Line 9.Line 10

41

FQL

Program Executions as Regular Expressions

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

Line 1.Line 2.Line 3.Line 4.Line 5.Line 8.Line 9.Line 10

42

FQL

Program Executions as Regular Expressions

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

Line 1.Line 2.Line 3.Line 4.Line 5.Line 8.Line 9.Line 10

43

FQL

Program Executions as Regular Expressions

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

Line 1.Line 2.Line 3.Line 4.Line 5.Line 8.Line 9.Line 10

44

FQL

Program Executions as Regular Expressions

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

Line 1.Line 2.Line 3.Line 4.Line 5.Line 8.Line 9.Line 10

45

FQL

Program Executions as Regular Expressions

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

Line 1.Line 2.Line 3.Line 4.Line 5.Line 8.Line 9.Line 10

46

FQL

Program Executions as Regular Expressions

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

47

FQL

Program Executions as Regular Expressions

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

� Several Paths

48

FQL

Program Executions as Regular Expressions

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

Line 1.Line 2.Line 3.Line 4.(Line 5 + Line 7).Line 8.Line 9.Line 10

� Several Paths

49

FQL

Program Executions as Regular Expressions

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

Line 1.Line 2.Line 3.Line 4.(Line 5 + Line 7).Line 8.Line 9.Line 10

� Several Paths
� Language: Set of

program executions

50

FQL

Program Executions as Regular Expressions

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

Line 1.Line 2.Line 3.Line 4.(Line 5 + Line 7).Line 8.Line 9.Line 10

� Several Paths
� Language: Set of

program executions
� Test goals are also sets

of program executions

51 In practice, the alphabet is more complex than line numbers.

FQL

Program Executions as Regular Expressions

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

Line 1.Line 2.Line 3.Line 4.(Line 5 + Line 7).Line 8.Line 9.Line 10

� Several Paths
� Language: Set of

program executions
� Test goals are also sets

of program executions
� Practical test goals can

be expressed using
regular languages

� How to express sets of
test goals?

52 In practice, the alphabet is more complex than line numbers.

53

FShell Query Language (FQL)

Quoted Regular Expressions

a*.b.a* + c.d

“a*.b.a* + c.d*“

ℒ 𝐴𝐴2 = { 𝑎𝑎∗. 𝑏𝑏. 𝑎𝑎∗ + 𝑐𝑐.𝑑𝑑∗ }

𝐴𝐴2

ℒ 𝐴𝐴1 = { 𝑏𝑏, 𝑎𝑎𝑏𝑏, 𝑏𝑏𝑎𝑎, 𝑎𝑎𝑏𝑏𝑎𝑎,
𝑎𝑎𝑎𝑎𝑏𝑏, 𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎, … ,
𝑐𝑐, 𝑐𝑐𝑑𝑑, 𝑐𝑐𝑑𝑑𝑑𝑑, … }

a

a
a a

b

b

c

d

a*.b.a* + c.d*

𝐴𝐴1

“a*.b.a*“ + “c.d*“

a*.b.a*

c.d

ℒ 𝐴𝐴3 = { 𝑎𝑎∗. 𝑏𝑏. 𝑎𝑎∗, 𝑐𝑐.𝑑𝑑∗ }

𝐴𝐴3

Infinite number of specific paths

One test goal Two test goals

FQL

Filter Functions
1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

54

FQL

� @ID

Filter Functions: knowledge about programs

Line 1 + Line 2 + Line 3 + Line 4 + Line 5 +
Line 6 + Line 7 + Line 8 + Line 9 + Line 10

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

55

FQL

� @ID

� @BASICBLOCKENTRY

Filter Functions: knowledge about programs

Line 2 + Line 5 + Line 7 + Line 9

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

56

FQL

� @ID

� @BASICBLOCKENTRY

� @ENTRY

Filter Functions: knowledge about programs

Line 1

1 int max(int x, int y) {
2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

57

FQL

� @ID

� @BASICBLOCKENTRY

� @ENTRY

� @EXIT

Filter Functions: knowledge about programs
 1 int max(int x, int y) {

2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

Line 10

58

FQL

� @ID

� @BASICBLOCKENTRY

� @ENTRY

� @EXIT

� @LINE(7)

Filter Functions: knowledge about programs
 1 int max(int x, int y) {

2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

Line 7

59

FQL

� @ID

� @BASICBLOCKENTRY

� @ENTRY

� @EXIT

� @LINE(7)

� ...

Filter Functions: knowledge about programs
 1 int max(int x, int y) {

2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

60

FQL

� @ID

� @BASICBLOCKENTRY

� @ENTRY

� @EXIT

� @LINE(7)

� ...

� Filter functions can be combined:

Filter Functions: knowledge about programs
 1 int max(int x, int y) {

2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

61

FQL

� @ID

� @BASICBLOCKENTRY

� @ENTRY

� @EXIT

� @LINE(7)

� ...

� Filter functions can be combined:
• @BASICBLOCKENTRY(@FUNCTION(f))

• @BASICBLOCKENTRY(@FUNCTION(f)|@FUNCTION(g))

• ...

Filter Functions: knowledge about programs
 1 int max(int x, int y) {

2 int tmp;
3
4 if (x >= y)
5 tmp = x;
6 else
7 tmp = y;
8
9 return tmp;
10 }

62

63

FShell Query Language (FQL)

Coverage Criteria as FQL Queries

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

“for each basic block in the program there is a test case
in the test suite which covers the basic block“

 1 if (x > 10)
 2 f1 = false;
 3 else
 4 f1 = true;
 5 if (x == 100)
 6 f2 = false;
 7 if (f1)
 8 s = f2;
 9 else
10 s = f1;

64

FShell Query Language (FQL)

Coverage Criteria as FQL Queries

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

C Source Code

“for each basic block in the program there is a test case
in the test suite which covers the basic block“

cover “@ID*“.@LINE(10).“@ID*“

cover “@ID*“.@LINE(8).“@ID*“

65

FShell Query Language (FQL)

Coverage Criteria as FQL Queries

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

FQL Query C Source Code

Test Suite

x = 10
x = 11

a)

a)

b)

b)

“for each basic block in the program there is a test case
in the test suite which covers the basic block“

...

...

 1 if (x > 10)
 2 f1 = false;
 3 else
 4 f1 = true;
 5 if (x == 100)
 6 f2 = false;
 7 if (f1)
 8 s = f2;
 9 else
10 s = f1;

66

FShell Query Language (FQL)

Coverage Criteria as FQL Queries

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

FQL Query

cover “@ID*“.@LINE(8).“@ID*“

cover “@ID*“.@LINE(10).“@ID*“

a)

b)

“for each basic block in the program there is a test case
in the test suite which covers the basic block“

...

a)
@ID* @LINE(8) @ID*

67

FShell Query Language (FQL)

Coverage Criteria as FQL Queries

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

FQL Query

cover “@ID*“.@LINE(8).“@ID*“

cover “@ID*“.@LINE(10).“@ID*“

a)

b)

“for each basic block in the program there is a test case
in the test suite which covers the basic block“

...

a)
@ID* @LINE(8) @ID*

b)
@ID* @LINE(10) @ID*

68

FShell Query Language (FQL)

Coverage Criteria as FQL Queries

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

FQL Query

cover “@ID*“.@LINE(8).“@ID*“

cover “@ID*“.@LINE(10).“@ID*“

a)

b)

“for each basic block in the program there is a test case
in the test suite which covers the basic block“

...

a)
@ID* @LINE(8) @ID*

b)
@ID* @LINE(10) @ID*

...

word = regular
expression

69

FShell Query Language (FQL)

Coverage Criteria as FQL Queries

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

FQL Query

cover “@ID*“.@LINE(8).“@ID*“

cover “@ID*“.@LINE(10).“@ID*“

a)

b)

“for each basic block in the program there is a test case
in the test suite which covers the basic block“

...

a)
@ID* @LINE(8) @ID*

b)
@ID* @LINE(10) @ID*

70

FShell Query Language (FQL)

Coverage Criteria as FQL Queries

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

FQL Query

cover “@ID*“.@LINE(8).“@ID*“

cover “@ID*“.@LINE(10).“@ID*“

a)

b)

“for each basic block in the program there is a test case
in the test suite which covers the basic block“

...

a)
@ID* @LINE(8) @ID*

b)
@ID* @LINE(10) @ID*

71

FShell Query Language (FQL)

Coverage Criteria as FQL Queries

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

FQL Query

cover “@ID*“.@LINE(8).“@ID*“

cover “@ID*“.@LINE(10).“@ID*“

a)

b)

“for each basic block in the program there is a test case
in the test suite which covers the basic block“

...
...

@LINE(10) @ID*

@LINE(8)

@ID*

72

FShell Query Language (FQL)

Coverage Criteria as FQL Queries

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

FQL Query

cover “@ID*“.@LINE(8).“@ID*“

cover “@ID*“.@LINE(10).“@ID*“

a)

b)

“for each basic block in the program there is a test case
in the test suite which covers the basic block“

...
...

@LINE(10) @ID*

@LINE(8)

@ID*

cover “@ID*“.(@LINE(8) + @LINE(10) + ...).“@ID*“

73

FShell Query Language (FQL)

Coverage Criteria as FQL Queries

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

FQL Query

cover “@ID*“.@LINE(8).“@ID*“

cover “@ID*“.@LINE(10).“@ID*“

a)

b)

“for each basic block in the program there is a test case
in the test suite which covers the basic block“

...
...

@LINE(10) @ID*

@LINE(8)

@ID*

cover “@ID*“.(@LINE(8) + @LINE(10) + ...).“@ID*“

FQL allows the Kleene-
star only inside of quotes!

74

FShell Query Language (FQL)

Coverage Criteria as FQL Queries

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

FQL Query

cover “@ID*“.@LINE(8).“@ID*“

cover “@ID*“.@LINE(10).“@ID*“

a)

b)

“for each basic block in the program there is a test case
in the test suite which covers the basic block“

...
...

@LINE(10) @ID*

@LINE(8)

@ID*

cover “@ID*“.(@LINE(8) + @LINE(10) + ...).“@ID*“

75

FShell Query Language (FQL)

Coverage Criteria as FQL Queries

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

FQL Query

cover “@ID*“.@LINE(8).“@ID*“

cover “@ID*“.@LINE(10).“@ID*“

a)

b)

“for each basic block in the program there is a test case
in the test suite which covers the basic block“

...
...

@LINE(10) @ID*

@LINE(8)

@ID*

cover “@ID*“.(@LINE(8) + @LINE(10) + ...).“@ID*“

Do we have to express a
coverage criterion for each

program individually?

76

FShell Query Language (FQL)

Coverage Criteria as FQL Queries

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

FQL Query

cover “@ID*“.@LINE(8).“@ID*“

cover “@ID*“.@LINE(10).“@ID*“

a)

b)

“for each basic block in the program there is a test case
in the test suite which covers the basic block“

...
...

@LINE(10) @ID*

@LINE(8)

@ID*

cover “@ID*“.(@LINE(8) + @LINE(10) + ...).“@ID*“

Do we have to express a
coverage criterion for each

program individually?

 1 if (x > 10)

 2 f1 = false;

 3 else

 4 f1 = true;

 5 if (x == 100)

 6 f2 = false;

 7 if (f1)

 8 s = f2;

 9 else

10 s = f1;

77

FShell Query Language (FQL)

Filter Functions

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

 1 if (x > 10)

 2 f1 = false;

 3 else

 4 f1 = true;

 5 if (x == 100)

 6 f2 = false;

 7 if (f1)

 8 s = f2;

 9 else

10 s = f1;

78

FShell Query Language (FQL)

� @ID

Filter Functions Revisited

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

Line 1 + Line 2 + Line 3 + Line 4 + Line 5 +
Line 6 + Line 7 + Line 8 + Line 9 + Line 10

 1 if (x > 10)

 2 f1 = false;

 3 else

 4 f1 = true;

 5 if (x == 100)

 6 f2 = false;

 7 if (f1)

 8 s = f2;

 9 else

10 s = f1;

79

FShell Query Language (FQL)

� @ID

� @LINE(8)

Filter Functions Revisited

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

Line 8

 1 if (x > 10)

 2 f1 = false;

 3 else

 4 f1 = true;

 5 if (x == 100)

 6 f2 = false;

 7 if (f1)

 8 s = f2;

 9 else

10 s = f1;

80

FShell Query Language (FQL)

� @ID

� @LINE(8)

� NOT(@LINE(8))

Filter Functions Revisited

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

Line 1 + Line 2 + Line 3 + Line 4 + Line 5 +
Line 6 + Line 7 + Line 9 + Line 10

 1 if (x > 10)

 2 f1 = false;

 3 else

 4 f1 = true;

 5 if (x == 100)

 6 f2 = false;

 7 if (f1)

 8 s = f2;

 9 else

10 s = f1;

81

FShell Query Language (FQL)

� @ID

� @LINE(8)

� NOT(@LINE(8))

� @BASICBLOCKENTRY

Filter Functions Revisited

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

Line 2 + Line 4 + Line 6 + Line 8 + Line 10

 1 if (x > 10)

 2 f1 = false;

 3 else

 4 f1 = true;

 5 if (x == 100)

 6 f2 = false;

 7 if (f1)

 8 s = f2;

 9 else

10 s = f1;

82

FShell Query Language (FQL)

� @ID

� @LINE(8)

� NOT(@LINE(8))

� @BASICBLOCKENTRY

� ...

Filter Functions Revisited

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

83

FShell Query Language (FQL)

Coverage Criteria as FQL Queries

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

FQL Query

cover “@ID*“.@LINE(8).“@ID*“

cover “@ID*“.@LINE(10).“@ID*“

a)

b)

“for each basic block in the program there is a test case
in the test suite which covers the basic block“

...
...

@LINE(10) @ID*

@LINE(8)

@ID*

cover “@ID*“.(@LINE(8) + @LINE(10) + ...).“@ID*“

84

FShell Query Language (FQL)

Coverage Criteria as FQL Queries

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

FQL Query

cover “@ID*“.@LINE(8).“@ID*“

cover “@ID*“.@LINE(10).“@ID*“

a)

b)

“for each basic block in the program there is a test case
in the test suite which covers the basic block“

...
...

@LINE(10) @ID*

@LINE(8)

@ID*

cover “@ID*“.(@LINE(8) + @LINE(10) + ...).“@ID*“ cover “@ID*“.@BASICBLOCKENTRY.“@ID*“

85

FShell Query Language (FQL)

Passing Clauses in Coverage Criteria

cover “@ID*“.@BASICBLOCKENTRY.“@ID*“
passing “@ID*.NOT(@FUNCTION(unimplemented)).@ID*“

VMCAI’09, ASE’10, HVC’10: Holzer , Schallhart, Tautschnig, Veith

„Block Coverage“
cover all program blocks

„Condition Coverage“

cover all program conditions

Simple Coverage Criteria

cover @CONDITIONEDGE

cover EDGES(INTERSECT(@CONDITIONEDGE,
@STMTTYPE(if,switch,for,while,?:)))

cover @BASICBLOCKENTRY

Complex Coverage Criteria

“Restricted Scope of Analysis”
Condition coverage in function partition with test cases that reach line 7 at
least once.

“Condition/Decision Coverage”

Condition/decision coverage (the union of condition and decision coverage)

“Interaction Coverage”

Cover all possible pairs between conditions in function sort and basic blocks
in function eval, i.e., cover all possible interactions between sort and eval.

“Cartesian Block Coverage”

Cover all pairs of basic blocks in function partition.

in @FUNC(partition) cover @CONDITIONEDGE passing @7

cover @CONDITIONEDGE + @DECISIONEDGE

cover (@CONDITIONEDGE & @FUNC(sort)) . “ID*“ .
 (@BASICBLOCKENTRY & @FUNC(eval))

cover @BASICBLOCKENTRY. “ID*“ . @BASICBLOCKENTRY

Complex Coverage Criteria

“Constrained Program Paths”
Basic block coverage with test cases that satisfy the assertion j > 0
before executing line 3.

“Constrained Inputs”

Basic block coverage in function sort with test cases that use a list
with 2 to 15 elements.

“Recursion Depth”

Cover function eval with condition coverage and require each test
case to perform three recursive invocations of eval.

cover @BASICBLOCKENTRY passing @LINE(2) .{j>0}

cover @ENTRY(sort).{len>=2}.{len<=15}.
 .“NOT(@EXIT(sort))*“.
 @BASICBLOCKENTRY

in @FUNC(eval) cover @CONDITIONEDGE
passing @CALL(eval).NOT(@EXIT(eval))*.@CALL(eval)
 .NOT(@EXIT(eval))*.@CALL(eval)

Complex Coverage Criteria

“Acyclic Path Coverage”
Cover all acyclic paths through functions main and insert.

“Loop-Bounded Path Coverage”

Cover all paths through main and insert which pass each statement
at most twice.

“Def Coverage”

Cover all statements defining variable t.

“Use Coverage”

Cover all statements which use variable t as right hand side value.

“Def-Use Coverage”

Cover all def-use pairs of variable t.

cover PATHS(@FUNC(main) | @FUNC(insert),1)

cover PATHS(@FUNC(main) | @FUNC(insert),2)

cover @DEF(t)

cover @USE(t)

cover @DEF(t) . “NOT(@DEF(t))*” . @USE(t)

Query-Driven Test Case Generation

I. Test Specification Language FQL

II. Test Case Generation Backends

a. FShell: Based on CBMC / SAT
b. CPA-Tiger: Based on CPA / abstraction

III. FQL Theoretical Background

96

Query-Driven Program Testing

Programs as Databases

Coverage
Criterion Program

Test Input
Generator

Test Suite

Query Database
Database

Engine

Query Result

FQL
Query

C Source
Code

FShell
CPAtiger

97

Query-Driven Program Testing

� Bounded Model
Checking

� Loop Bounds

� Can‘t show non-
existence of test
case

FShell

Test Input
Generator

Database
Engine

� Predicate
Abstraction

� No Loop Bounds

� Proves existence
and non-existence
of test cases

CPAtiger

FShell
CPAtiger

 FShell: Approach

Query: test specification
 COVER @basicblockentry

Step 1: Program Instrumentation

Add monitoring layer to C program + query specific monitor
Encode all test goals into monitor

Step 2: Test Case Generation

Use Kroening’s CBMC + Guided SAT Enumeration for
Efficient Enumeration of Test Cases

Background: Kröning’s CBMC

 C Bounded Model Checker
 Clean and stable code base
 Full ANSI-C support
 SAT solver =
 decision procedure

FShell: Architecture

Reuses parts of CBMC
Interactive command-line

frontend

Iterative Constraint Strengthening
for Fast Test Case Generation

� Fast computation of solutions by SAT enumeration

� Incremental SAT solving
� Clause database is updated on-the-fly
� SAT solver suspended during database update by FShell
� Conflict database is kept and reused

� Instance becomes unsatisfiable iff remaining goals infeasible

� Complex coverage criteria:
groupwise constraint strengthening

Iterative Constraint Strengthening

Program + monitors described by CNF formula
Example test goals
Initial constraint: “reach some test goal”

Assume and are satisfied by first solution:
“reach new test goal”

103

Query-Driven Program Testing

� Bounded Model
Checking

� Loop Bounds

� Can‘t show non-
existence of test
case

FShell

Test Input
Generator

Database
Engine

� Predicate
Abstraction

� No Loop Bounds

� Proves existence
and non-existence
of test cases

CPAtiger

FShell
CPAtiger

104

Query-Driven Program Testing

CPAtiger

Test Input
Generator

Test Inputs &
Proofs of Non-existence

FQL
Query

C Source
Code

Automata
𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑛𝑛

Repeated Invocation of
an Automaton-guided
Reachability Analysis

𝐴𝐴𝑖𝑖

[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

For real-world
programs the

number of automata
becomes huge!

How can we reuse
analysis results
across different

automata?

Model Checker: Is there a
program execution that is

accepted by the automaton?

106

Information Reuse

[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

 𝑝𝑝3

8,10

 𝑝𝑝1 𝑝𝑝0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7 6 4

8,10

 𝑝𝑝2

For this automaton
we ran a

reachability analysis

108

Information Reuse

[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

 𝑝𝑝3

8,10

 𝑝𝑝1 𝑝𝑝0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7 6 4

8,10

 𝑝𝑝2

8,10

 𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

6 4

109

Information Reuse

[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

 𝑝𝑝3

8,10

 𝑝𝑝1 𝑝𝑝0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7 6 4

8,10

 𝑝𝑝2

8,10

 𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

6 4

For this automaton
we want to run a

reachability analysis

For this automaton
we want to run a

reachability analysis

110

Information Reuse

[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

 𝑝𝑝3

8,10

 𝑝𝑝1 𝑝𝑝0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7 6 4

8,10

 𝑝𝑝2

8,10

 𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

6 4

For this automaton
we want to run a

reachability analysis

111

Information Reuse

[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

 𝑝𝑝3

8,10

 𝑝𝑝1 𝑝𝑝0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7 6 4

8,10

 𝑝𝑝2

8,10

 𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

6 4

For this automaton
we want to run a

reachability analysis

112

Information Reuse

[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

 𝑝𝑝3

8,10

 𝑝𝑝1 𝑝𝑝0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7 6 4

8,10

 𝑝𝑝2

8,10

 𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

6 4

Reuse all
reachability infos!

113

Information Reuse

[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

 𝑝𝑝3

8,10

 𝑝𝑝1 𝑝𝑝0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7 6 4

8,10

 𝑝𝑝2

8,10

 𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

6 4

Simulation
Relation

114

Information Reuse

[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

 𝑝𝑝3

8,10

 𝑝𝑝1 𝑝𝑝0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7 6 4

8,10

 𝑝𝑝2

8,10

 𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

6 4

Simulation
Relation

„for each transition in the
second automaton, we
find a corresponding
transition in the first

automaton“

115

Information Reuse

[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

 𝑝𝑝3

8,10

 𝑝𝑝1 𝑝𝑝0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7 6 4

8,10

 𝑝𝑝2

8,10

 𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

6 4

116

Information Reuse

[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

 𝑝𝑝3

8,10

 𝑝𝑝1 𝑝𝑝0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7 6 4

8,10

 𝑝𝑝2

8,10

 𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7

6 4

117

Information Reuse

[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

 𝑝𝑝3

8,10

 𝑝𝑝1 𝑝𝑝0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7 6 4

8,10

 𝑝𝑝2

8,10

 𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7

6 4

118

Information Reuse

[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

 𝑝𝑝3

8,10

 𝑝𝑝1 𝑝𝑝0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7 6 4

8,10

 𝑝𝑝2

8,10

 𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7

6 4

Empty
Simulation
Relation

119

Information Reuse

[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

 𝑝𝑝3

8,10

 𝑝𝑝1 𝑝𝑝0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7 6 4

8,10

 𝑝𝑝2

8,10

 𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7

6 4

Empty
Simulation
Relation

120

Information Reuse

[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

 𝑝𝑝3

8,10

 𝑝𝑝1 𝑝𝑝0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7 6 4

8,10

 𝑝𝑝2

8,10

 𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7

6 4

Ignore

Ignore!

121

Information Reuse

Simulation Relation modulo { 𝑞𝑞2, 7, 𝑞𝑞2 }

[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

 𝑝𝑝3

8,10

 𝑝𝑝1 𝑝𝑝0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7 6 4

8,10

 𝑝𝑝2

8,10

 𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

1,2,5,6,7,
8,10

1,2,4,5,7,
8,10

7

6 4

Ignore

Ignore!

CPAtiger

� Based on Dirk Beyer´s SW model checker
CPAchecker

� Experiments in Holzer´s thesis
• Windows NT Drivers

• Variants of Basic Block Coverage:
− 𝐵𝐵𝐵𝐵: Cover each basic block
− 𝐵𝐵𝐵𝐵2: Cover each pair of basic blocks
− 𝐵𝐵𝐵𝐵3: Cover each triple of basic blocks

• Bounded-Path Coverage

122
[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

Experiments (𝐵𝐵𝐵𝐵2 Coverage)

1

10

100

1000

10000

100000

All Optimizations
No ARG Reuse

Time-out (>15000s) t [s]

123

Improvements over naive iteration approach

[ESOP‘13] Beyer, Holzer, Tautschnig, Veith

Query-Driven Test Case Generation

I. Test Specification Language FQL

II. Test Case Generation Backends

a. FShell: Based on CBMC / SAT
b. CPA-Tiger: Based on CPA / abstraction

III. FQL Theoretical Background

125

Semantic Foundations of FQL

Σ∗
𝑎𝑎

Σ∗ 𝑏𝑏
𝑐𝑐

{ Σ∗ ⋅ {𝑎𝑎} ⋅ Σ∗ ,
Σ∗ ⋅ {𝑏𝑏} ⋅ Σ∗ ,
Σ∗ ⋅ {𝑐𝑐} ⋅ Σ∗ }

126

Semantic Foundations of FQL

Regular Sets of Rational Languages (RSRL)
[Afonin and Khazova, 2005]

Σ∗
𝑎𝑎

Σ∗ 𝑏𝑏
𝑐𝑐

{ Σ∗ ⋅ {𝑎𝑎} ⋅ Σ∗ ,
Σ∗ ⋅ {𝑏𝑏} ⋅ Σ∗ ,
Σ∗ ⋅ {𝑐𝑐} ⋅ Σ∗ }

𝐾𝐾 = { 𝛿𝛿1𝛿𝛿2𝛿𝛿1 ,
𝛿𝛿1𝛿𝛿3𝛿𝛿1 ,
𝛿𝛿1𝛿𝛿4𝛿𝛿1 }

127

Semantic Foundations of FQL

Regular Sets of Rational Languages (RSRL)
[Afonin and Khazova, 2005]

Σ∗
𝑎𝑎

Σ∗ 𝑏𝑏
𝑐𝑐

𝛿𝛿1
𝛿𝛿2

𝛿𝛿1 𝛿𝛿3
𝛿𝛿4

{ Σ∗ ⋅ {𝑎𝑎} ⋅ Σ∗ ,
Σ∗ ⋅ {𝑏𝑏} ⋅ Σ∗ ,
Σ∗ ⋅ {𝑐𝑐} ⋅ Σ∗ }

𝐾𝐾 = { 𝛿𝛿1𝛿𝛿2𝛿𝛿1 ,
𝛿𝛿1𝛿𝛿3𝛿𝛿1 ,
𝛿𝛿1𝛿𝛿4𝛿𝛿1 }

128

Semantic Foundations of FQL

Regular Sets of Rational Languages (RSRL)
[Afonin and Khazova, 2005]

Σ∗
𝑎𝑎

Σ∗ 𝑏𝑏
𝑐𝑐

𝛿𝛿1
𝛿𝛿2

𝛿𝛿1 𝛿𝛿3
𝛿𝛿4

{ Σ∗ ⋅ {𝑎𝑎} ⋅ Σ∗ ,
Σ∗ ⋅ {𝑏𝑏} ⋅ Σ∗ ,
Σ∗ ⋅ {𝑐𝑐} ⋅ Σ∗ }

• 𝜑𝜑 𝛿𝛿1 = Σ∗
• 𝜑𝜑 𝛿𝛿2 = {𝑎𝑎}
• 𝜑𝜑 𝛿𝛿3 = {𝑏𝑏}
• 𝜑𝜑 𝛿𝛿4 = {𝑐𝑐}

𝜑𝜑 maps to a
regular language

≡ 𝐾𝐾,𝜑𝜑

Closure Properties 1

� The complement of an RSRL is not an RSRL
� RSRL are closed under product, Kleene star, union

129

Operator Finite Case (FQL) Finite Case,

fixed 𝝋𝝋 (FQL)

⋅,∪,∩,− Closed Not closed

Under submission: Holzer , Schallhart, Tautschnig, Veith

130

Closure Properties 2

Point-wise Operators

cover “@ID*“.@BASICBLOCKENTRY.“@ID*“
passing @ID*.NOT(@FUNCTION(unimplemented)).@ID*

ℛ ⩀ 𝑅𝑅 = { 𝐿𝐿 ∩ 𝑅𝑅 ∣ 𝐿𝐿 ∈ ℛ }

Point-wise

Operators

Finite RSRL,

fixed 𝝋𝝋 (FQL)

Finite RSRL

(FQL)

RSRL

∗, � ,∪,∩,− Not closed Closed Not Closed

Under submission: Holzer , Schallhart, Tautschnig, Veith

Complexities of Decision Problems

131
Under submission: Holzer , Schallhart, Tautschnig, Veith

Decision

Problem

Kleene-star free

case (FQL)

General case

Equivalence ℛ1 = ℛ2 PSPACE-complete ?
Inclusion ℛ1 ⊆ ℛ2 PSPACE-complete ?
Membership 𝐿𝐿 ∈ ℛ PSPACE-complete O(2EXPSPACE)

Further Work

Model-Based Testing with FQL

Case Studies
Automotive, Avionic

Con2colic testing
 Extension of concolic testing to systematically

explore inputs and thread interference
 Æ Proceedings

Testing for Distributed Algorithms
 Systems with vast non-determinism

132

Conclusion

FQL is an automata-based framework for specification of
coverage criteria.

� Simple well-understood semantics

� Based on quoted regular expressions

� Separation between test specification and test case
generation engine

� Easy to use for non-specialists

� Prototype implementations based on CBMC and CPA.

133

	Slide Number 1
	Slide Number 2
	Students and Collaborators
	Main Publications on Testing 2008-2013
	Model Checking and Testing��Theoretical Background�How we came to work on Testing���
	Slide Number 6
	Turing's Quote on Program Verification
	Slide Number 8
	Dijkstra’s Turing Award Lecture 1972
	Limitations of Human Reasoning
	Software Model Checking
	Software Model Checking
	Software Model Checking Paradigms
	 Predicate Abstraction
	
	Slide Number 18
	
	SAT/SMT for path feasibility
	Software Model Checking
	Bill Gates 2002 on SW Model Checking
	Dijkstra’s Turing Award Lecture 1972
	Dijkstra’s Turing Award Lecture 1972
	Bill Gates 2002 on SW Model Checking
	Reduction of Model Checking to Testing
	Slide Number 27
	FORTAS 2008-2011 (DFG/FWF) �
	Reduction of Testing to Model Checking
	Precision of Coverage Criteria
	Is there a systematic way to specify coverage criteria and leverage model checking for test case generation?
	Query-Driven Program Testing
	Slide Number 33
	Slide Number 34
	FQL Design Challenge�Language Design Principles
	FQL Design Challenge�More Language Desiderata
	Slide Number 37
	FQL
	FQL
	FQL
	FQL
	FQL
	FQL
	FQL
	FQL
	FQL
	FQL
	FQL
	FQL
	FQL
	FQL
	FQL
	FShell Query Language (FQL)
	FQL
	FQL
	FQL
	FQL
	FQL
	FQL
	FQL
	FQL
	FQL
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	FShell Query Language (FQL)
	Simple Coverage Criteria
	Complex Coverage Criteria
	Complex Coverage Criteria
	Complex Coverage Criteria
	Slide Number 95
	Query-Driven Program Testing
	Query-Driven Program Testing
	 FShell: Approach
	Background: Kröning’s CBMC
	FShell: Architecture
	Iterative Constraint Strengthening �for Fast Test Case Generation
	Iterative Constraint Strengthening
	Query-Driven Program Testing
	Query-Driven Program Testing
	Information Reuse
	Information Reuse
	Information Reuse
	Information Reuse
	Information Reuse
	Information Reuse
	Information Reuse
	Information Reuse
	Information Reuse
	Information Reuse
	Information Reuse
	Information Reuse
	Information Reuse
	Information Reuse
	Information Reuse
	CPAtiger
	Experiments (𝐵 𝐵 2 Coverage)
	Slide Number 124
	Semantic Foundations of FQL
	Semantic Foundations of FQL
	Semantic Foundations of FQL
	Semantic Foundations of FQL
	Closure Properties 1
	Closure Properties 2
	Complexities of Decision Problems
	Further Work
	Conclusion

