ICST 2015

8th IEEE International Conference on
Software Testing, Verification and Validation

Achievements, Open Problems and Challenges for

Search based Software Testing

77777 w 7777777 777777 77272727 v 7777777
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
2222112 2222129
L2 §212

wwwwww

nnnnnn
LLLLLL

1111111111111111111
::::::::::::
LLLLLLLLLLL

LLLLL

University College London

Achievements, open problems and challenges for
search based software testing

Mark Harman, Yue Jia and Yuanyuan Zhang
University College London, CREST Centre, London, UK

Abstract—Search Based Software Testing (SBST) formulates
testing as an optimisation problem, which can be attacked using
computational search techniques from the field of Search Based
Software Engineering (SBSE). We present an analysis of the
SBST research agenda , focusing on the open problems and chal-
lenges of testing non-functional properties, in particular a topic
we call *‘Search Based Energy Testing’ (SBET), Multi-objective
SBST and SBST for Test Strategy Identification. We conclude
with a vision of FIFIVERIFY tools, which would automatically
find faults, fix them and verify the fixes. We explain why we
think such FIFIVERIFY tools constitute an exciting challenge for
the SBSE community that already could be within its reach.

[. INTRODUCTION

Search Based Software Testing (SBST) is the sub-area of
Search Based Software Engineering (SBSE) concerned with
software testing [2], [85]. SBSE uses computational search
techniques to tackle software engineering problems (testing
problems in the case of SBST). typified by large complex
search spaces [58]. Test objectives find natural counterparts
as the fitness functions used by SBSE to guide automated
search, thereby facilitating SBSE formulations of many (and
diverse) testing problems. As a result. SBST has proved to
be a widely applicable and effective way of generating test
data, and optimising the testing process. However, there are
many exciting challenges and opportunities that remain open
for further research and development. as we will show in this
paper.

It 1s widely believed that approximately half the budget
spent on software projects is spent on software testing. and
therefore, it is not surprising that perhaps a similar proportion
of papers in the software engineering literature are concerned
with software testing. We report an updated literature analysis
from which we observe that approximately half of all SBSE
papers are SBST papers. a figure little changed since the last
thorough publication audit (for papers up to 2009), which
found 54% of SBSE papers concemed SBST [56]. Many
excellent and detailed surveys of the SBST literature can be
found elsewhere [2). [4]. [55]. [85]), [126]. Therefore, rather
than attempting another survey, we provide an analysis of
SBST research trends, focusing on open challenges and areas
for future work and development.

"This keynote was given by Mark Harman at the 8th IEEE Intemational
Conference on Software Testing. Verification and Validation (ICST 2015), but
this paper, on which the keynote was based, is the work of all three authors.

II. A BRIEF HISTORY OF SBS'1

Since the first paper on SBST 1s also likely to be the first
paper on SBSE. the early history of SBST is also the early
history of SBSE. SBSE is a sub-area of software engineering
with origins stretching back to the 1970s but not formally
established as a field of study in its own nght unul 2001
[51). and which only achieved more widespread acceptance
and uptake many vyears later [38]. [43]. [100].

The first mention of software optimisation (of any kind) is
almost certainly due to Ada Augusta Lovelace in 1842, Her
English language translation of the article (wrntten in Italian
by Menabrae). "Sketch of the Analytical Engine Invented
by Charles Babbage' includes seven entries, labelled “Note
A’ to "Note G’ and initialed "A_A.L’. Her notes constituted
an article themselves (and occupied three quarters of the
whole document). In these notes we can see perhaps the first
recognition of the need for software optimisation and source
code analysis and manipulation (a point argued in more detail
elsewhere [44]):

“In almost every computation a greatr variety of
arrangements for the succession of the processes is
possible, and various considerations must influence
the selection amongst them for the purposes of
a Calculatine Engine. One essential object is to
choose that arrangement which shall tend to reduce
to a minimum the time necessary for completing the
calculation.” Extract from "Note D".

The introduction of the idea of software testing i1s probably
due to Turing [115). who suggested the use of manually
constructed assertions. In his short paper, we can find the
origins of both software testing and software verification. The
first use of oprimisation techniques In software testing and
verification probably dates back to the seminal PhD thesis
by James King [67]. who used automated symbolic execution
to capture path conditions, solved using linear programming.
The first formulation of the test mput space as a search
space probably dates back seven years earlier to 1962, when
a Cobol test data generation tool was introduced by Sauder
[103]. Sauder formulates the test generation problem as one
of finding test inputs from a search space. though the search
algonthm 1s random search. making this likely to be the first
paper on Random Test Data Generation. Sauder’'s work is
also significant because it introduces the idea of constrants
to capture path conditions, although these constraints are
manually defined and not automatically constructed.

Ihere Is a paper
accompany this keynote

Achievements, open problems and challenges for
search based software testing

Mark Harman, Yue Jia and Yuanyuan Zhang
University College London, CREST Centre, London, UK

Abstract—Search Based Software Testing (SBST) formulates
testing as an optimisation problem, which can be attacked using
computational search techniques from the field of Search Based
Software Engineering (SBSE). We present an analysis of the
SBST research agenda’', focusing on the open problems and chal-
lenges of testing non-functional properties, in particular a topic
we call ‘Search Based Energy Testing’ (SBET), Multi-objective
SBST and SBST for Test Strategy Identification. We conclude
with a vision of FIFIVERIFY tools, which would automatically
find faults, fix them and verify the fixes. We explain why we
think such FIFIVERIFY tools constitute an exciting challenge for
the SBSE community that already could be within its reach.

[. INTRODUCTION

Search Based Software Testing (SBST) 1s the sub-area of
Search Based Software Engineering (SBSE) concerned with
software testing [2], [85]. SBSE uses computational search
techniques to tackle software engineering problems (testing
problems in the case of SBST), typified by large complex
earch sgaces [S8], dest gbjectives, f#d natural counterparts
s the d,bwW 10 SRl 0112

[I. A BRIEF HISTORY OF SBST

Since the first paper on SBST is also likely to be the first
paper on SBSE, the early history of SBST is also the early
history of SBSE. SBSE is a sub-area of software engineering
with origins stretching back to the 1970s but not formally
established as a field of study in its own right until 2001
[51], and which only achieved more widespread acceptance
and uptake many years later [38], [43], [100].

The first mention of software optimisation (of any kind) is
almost certainly due to Ada Augusta Lovelace in 1842. Her
English language translation of the article (written in Italian
by Menabrae), ‘Sketch of the Analytical Engine Invented
by Charles Babbage’ includes seven entries, labelled ‘Note
A’ to ‘Note G’ and initialed ‘A.A.L’. Her notes constituted
an article themselves (and occupied three quarters of the
whole document). In these notes we can see perhaps the first
recognition of the need for software optimisation and source
code analysis and manipulation (a point argued in more detail
elsewhere [44]):

\In almos ion a great yariefy of

Yuanyuan
Zhang

Achievements, open problems and challenges for
search based software testing

Mark Harman, Yue Jia and Yuanyuan Zhang
University College London, CREST Centre, London, UK

Abstract—Search Based Software Testing (SBST) formulates
testing as an optimisation problem, which can be attacked using
computational search techniques from the field of Search Based
Software Engineering (SBSE). We present an analysis of the
SBST research agenda’, focusing on the open problems and chal-
lenges of testing non-functional properties, in particular a topic
we call ‘Search Based Energy Testing’ (SBET), Multi-objective
SBST and SBST for Test Strategy Identification. We conclude
with a vision of FIFIVERIFY tools, which would automatically
find faults, fix them and verify the fixes. We explain why we
think such FIFIVERIFY tools constitute an exciting challenge for
the SBSE community that already could be within its reach.

I. INTRODUCTION

Search Based Software Testing (SBST) is the sub-area of
Search Based Software Engineering (SBSE) concerned with
software testing [2], [85]. SBSE uses computational search
techniques to tackle software engineering problems (testing
problems in the case of SBST), typified by large complex
earch sgaces [S8], Jdest objectives| fdd natural counterparts
s the ' d,bwW 10 SRl 0112

[I. A BRIEF HISTORY OF SBST

Since the first paper on SBST is also likely to be the first
paper on SBSE, the early history of SBST is also the early
history of SBSE. SBSE is a sub-area of software engineering
with origins stretching back to the 1970s but not formally
established as a field of study in its own right until 2001
[51], and which only achieved more widespread acceptance
and uptake many years later [38], [43], [100].

The first mention of software optimisation (of any kind) is
almost certainly due to Ada Augusta Lovelace in 1842. Her
English language translation of the article (written in Italian
by Menabrae), ‘Sketch of the Analytical Engine Invented
by Charles Babbage’ includes seven entries, labelled ‘Note
A’ to ‘Note G’ and initialed ‘A.A.L’. Her notes constituted
an article themselves (and occupied three quarters of the
whole document). In these notes we can see perhaps the first
recognition of the need for software optimisation and source
code analysis and manipulation (a point argued in more detail
elsewhere [44]):

Iy almosg 2 ion a, great yariefy of

Yue Jia
Technical work
and considerable help with slides

... and he’s here in Graz too

a =

Madame Tussaud’s
Sherlock Holmes

Museum 20 mins Wa.”(

o uceL 32, &
Marble Arch g i /@ M S t.}I;tl:ll’s

2

Eros i
| szl RoyalCourts
| Garden |
of Justice
- plarket

&
m Globe

Tate Modern Thaa e

Nelson’s

National Column
Gallery

Westminster | £ ondon Eye

Abbey (8P

National
History
Museum

ouse of Parliament

ICST'1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

COWs

CREST Open Workshop

Roughly one per montn

Discussion based

Recorded and archived

http://crest.cs.ucl.ac.uk/cow/
ICST'1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

COWs

CREST Open Workshop

Roughly one per montn

Discussion based

Recorded and archived

http://crest.cs.ucl.ac.uk/cow/
ICST'1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

COWs

CREST Open Workshop

Roughly one per montn

Discussion based

Recorded and archived

e —

http://crest.cs.ucl.ac.uk/cow/
ICST'1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

http://crest.cs.ucl.ac.uk/cow/
ICST'1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

COWs

#1otal Registrations 1347
#Unigue Attendees 623
#Unique Institutions 232
#Countries 42

#lalks 372

(Last updated on January 31, 2015)

http://crest.cs.ucl.ac.uk/cow/
ICST'1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

What is SBST

Search Based Software

Optimization Testing

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

What is SBST

In SBST we apply to search
large search spaces, functionr
that captures natural counterparts as test
objectives.

Particle Swarm Optimization
Tabu Search Ant Colonies P

Genetic Algorithms
Genetic Programming

Greedy | P
Estimation of Distribution Algorithms

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Hill Climbing

Simulated Annealing Random

What is SBSE

Search Based Software Engineering

In SBSE we apply to search
large search spaces, functionr
that captures natural counterparts as test
objectives.

Particle S Optimizati
Tabu Search Ant Colonies article Swarm Optimization

Genetic Algorithms
Genetic Programming

Greedy | P
Estimation of Distribution Algorithms

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Hill Climbing

Simulated Annealing Random

HIStory ol ——

SOFTWARE
TECHNOLOGY

ELSEVIER Information and Software Technology 43 (2001) 833-839

www._elsevier.com/locate/infsof

Search-based software engineering

Mark Harman®*, Bryan F. Jones"'

‘Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex, UBS 3PH, UK
be 2 e y . . ; -~ rgr
School of Computing, University of Glamorgan, Pontvpridd, CF37 IDL, UK

Abstract

This paper claims that a new field of software engineering research and practice is emerging: search-based software engineering. The paper
argues that software engineering is ideal for the application of metaheuristic search techniques. such as genetic algorithms, simulated
annealing and tabu search. Such search-based techniques could provide solutions to the difficult problems of balancing competing (and
some times inconsistent) constraints and may suggest ways of finding acceptable solutions in situations where perfect solutions are either
theoretically impossible or practically infeasible.

In order to develop the field of search-based software engineering, a reformulation of classic software engineering problems as search
problems is required. The paper briefly sets out key ingredients for successful reformulation and evaluation criteria for search-based software
engineering. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Software engineering: Metaheuristic: Genetic algorithm

1842 2001

’l UQM bulb used in
demonstration at Menlo Park
Chrisimas week 1879
From Fgy | Warndtaw Js

NMHT 578

‘In almost every computation a great variety of
arrangements for the succession of the processes is
possible, and various considerations must influence
the selection amongst them for the purposes of a
Calculating Engine. One essential object is to
choose that arrangement which shall tend to
reduce to a minimum the time necessary for
completing the calculation.”

Extract from ‘Note D’.

The first mention of software optimisation
1842

’
1*' ll

Checking a large routine
by Dr. A. Turing

In this shot paper, Turing
suggested the use of manually
constructed assertions and we
can find the origins of both
software testing and
software verification.

The introduction of the idea of software testing and

verification
1949

Triday, 2Lth June,

-
'/

Checking a e routine, by Dr, A, Turing.

How can one check a routine in the sense of making sure that it s right?

In order that the man wio checks may not have oo difficult « task the
programiar should make a nusber of definite assertions which can be checked au d er Orl I lu ‘ ateS th e teSt
individually, and fros which the correctncss of the whole progremse eanily
follon.

ion e g o RO 0 i generation problem as one of

T y finding test inputs from a

L3537
7758

— e search space, though the

search algorithm Is random
search, making this likely to be
the first paper on Random
Test Data Generation.

- ’ ; g
Formulation of the test input space as a search space g

1962

A CENERAL TEST DATA CENERATOR FOR COBOL

Lt Richard L. Sander

Automation Techasgues Branch

Headquartens, Ake Force Logistics Command

Wieight. Patterson Alr Forve Base, Ohio

™is article discusses 00 affort being sade

by e Alr Poree Logistios Oommend 10 developing
& sethod of genarating efTertive progres test
gats, This Test Data Gemeretor 1a destgned W
oparete In conjunoticn with the QLD compd) er
apleanted Wy ANLE. A8 suah, e i ot
only balilds date conforming %W deseriptions given
i the Data Divistion of & COROL progree byt Al
places Ln Sese 10408 aeossanry data relations
shipe %0 test the Jogie of Uhe COROL progree.,
Both the willisatics anl Uhe seted of operation
of e wysten are dlscuased Ia Wias paper,

SR L

Cne of e paor ndardevelopel areas that
still exinte La e develoment of progreeming
teckniquas 18 VYt of lLnearing sleguate ochedhout
of progress bafore relense for wae,. O Ue
logioal paths within & progren are Maghly som-
plax., The sffert W Lasure What sash of these
is Danatlomally surret can 9o pronisiiive -
meth M0 VAl only e soet viows s most fre-
Temtly spldorwl daents of e progres are
testad Whoroughly.

aent eriterion 16 Wt of eontrolling the content

of these almants,

™he sethed of oparetion and the Lnforsstion
pecatsary %W DML these Dunotions will nov be
Sesoribed in detall,

WAleation of whe QUILL Da'e Rivisico

Deteruining the formmt of data Fiealds re-
sults from & horough Intarpretation of the Data
Division of the QUGL souree progreas belng
Leated, Athin this Division, options sxist %
desaride 1o detall bYoth Yhe Miracture of every
eleent vithin a record and e relationabips of
these alamants W one another, Those options
wiloh afTeet Whe gonamtion of data are delined
sa follows!

ie NSRS

& sl shar ' establish the relation-
ship of one Wit of data %W others,

Jo BlAf In namder of characters,

S CAMAR indicating the tpe of data, f.e,,

alphabetio, mumarie, salphanuserio.
3 : w0 establish the nuwhar systen in

o

The seminal PhD thesis
by James King

James King used automated
symbolic execution to capture
path conditions, solved using
linear programming

The first use of optimisation techniques in software testing

and verification
1969

“We therefore considered various

subject

alternatives that would not be

to this limitation. The most

promising of these alternatives
appears to be a conjugate gradient
algorithm (‘hill climbing’ program)
that seeks to minimise a potential

function

inequal

constructed from the
tles.”

The first paper to use a meta-heuristic search technique

1973

SELECT=-A FORMAL SYSTEM FOR
TESTING AND DEBUGGING PROGRAMS

BY SYMBOLIC EXECUTION® At abOUt the Sdalne tlme, MIHGI’

Robert S, Boyer

wugingen o and Spooner were also

alo Park, Galiformie. S4cas experimenting with optimisation-
| | | based approaches for
el Dot iy P nben i ! -
Debugging; Solution of Systems of Inequalities. generatlng teSt data (Wthh they

A. Mechanical p
Abstract shortcomings

T CTC tO as ‘test selection’ In the
e P UM sense that they ‘select’ from the
iINput space, which, in the more
recent literature we would refer to

as ‘test data generation’).

The use of optimisation-based approach for 'test selectior

1976

EE TRANSACTIONS ON SOFTWARE ENGINEIRING VOL. SE 2. 90 5. SAFTEMMER 1%

Automatic Generation of Floating-Point Test Data

WERS MILLER anp DAVID L SPOONER

Adsrwwt Fod fumeancal poograms, of mom graslly o peog wm
with Nostingpoint dela, # may S that loge v of e and
Mormge s mads posibie by sung numencal macinestas methods
Instond of symbolic snecusion W geasrsie tont dets. Too mampies,
o matrin (nctonization whrostme and 3 sorting method, Sestrate Ba

Hype of data peoerstion problems that can be moommially toated
with sech masimiatsnn b hosgens

Imdes Terms Awlomatic tesl date groers lon, Deanching 4oty con
Ve e exeuvwmiom palh s ftwate evaluptum oy siee

INTHODUCTION

ESEARCH n program evaluation and verificstion b
only marely (e g. 11]) bepun with the explict reguire
ment that the program deal with resl numbers s op
posed 10 integers. This may be an ovenight since (hore s
theoretical rosults which sugpest the desinabllity of ths »
sumption, Specifically, a peneral procedurs of Tankd |2)
thows that cerlain properties, uidecidable (n the techmicsl
sense) for “imteper™ prograsms, are docidable for “numerical™
programa. Exampies of this phenomenon arise when one asks
if there exists & st of data driving execution of & certain kind
of program down s pven path
Moreover, there s poactical evidence supporting the case for

“hewrntic” W that it b not peacanteed to produce » set of et
dats executing & gven path whenever such dats exist. (On
the other hand, »» know of no gusraniteed data proseration
cheme whose oxtcution fime does not, In the worst case,
gow at ket exposentially with the length of the execytion
path)

Nusenx Al Maxizarion MeTions ros
CExERATING Test Data

Given the probles of generating flosting point lest data our
spproach begimas by fuing all integer pacameten of the gven
program (e 4. the Gmensiond of the data in o malrix program
ot the number of Rerations in m (terative method) so that the
only escescived decisions coatrolling program flow are cony
parboss volving redd values. Then, as will be seen, an execy
thon path takes the form of a staightdine program of foat.
Pepoit mmpneend tatements interspered with “path
construnt:” of the foerm o - 0, T l),ru < >0 F.ach S Ba
Sats-dependent ol walue pomibly defined in terma of pre-
viously computed sesults. For instance, & path which takes
the tree bramch of 2 test “Yrgx e ¥)™ has 2 comstraint ¢ > 0,
whess eg. c™ ARME -yt c*(x-¥)' (We will not discum
s as ; ~b. nhical and neac-ti i

190V

't appears that SBST research
lay dormant for at
approximately a decade untll
the work of Korel, which
iINntroduced a practical test
data generation approach, the
Alternating Variable Method
AVM), based on hill climbing.

A practical test data generation approach based on A

1990

IEER TRANSACTIONS ON SOFTWARF INGINFIRING VOF 4 MO 5 AUGLST 1o

Automated Software Test Data Generation

BOGDAN KOREL, MEMBER. 1080

Absiraci—Test data generation in program testing is the process of
identifying & set of test data which satisfies given testing criterion. Most
of the exisiing test data generstors [6), (8], [10), [16], [30) use symbobic
evaluation te derive lest data. However, in practical programs this
technique frequently requires complex algebraic manipulations, espe-
clally in the presence of arrays. In this paper we present an allernative
approach of test data generation which is based on actual execution of
the program under test, function minimization methods, and dynamic
data Bow analysis. Test data are developed for the program using sc-
tusl values of input variables. When the program is executed, the pro-
gram execution flow is moaltored. If during program execution an un-
desirable execution fow s observed (e.g., the “actusl’’ path does not
correspond to the selected control path) then function minkmization

search algorithms are used 1o automatically locate (he values of inpet
variables for which the selected path is traversed. In addition, dynamic
data flow analysis is used to determine those input variables responsi-
bie for the undesirable program behavior, leading to significant speed-
up of the search process. The approach of generating test daian Is then
extended o programs with dynamic dats structures, and & search

tomatically gencrate test data that meet the selected cri-
terion. The basic operation of the pathwise generator con-
sists of the following steps: program control flow graph
construction, path sclection, and test data generation. The
path sclector automatically identifics a set of paths (e 3.,
near-minimal set of paths) to satisfy selected testing cri-
tenon. Once a set of test paths is determined, then for
every path in this set the test generator derives input data
that results in the execution of the selected path

Most of the pathwise test data generators [6], [8], [10),
[16], [30] use symbolic evaluation to derive input data.
Symbolic evaluation involves executing a program using
symbolic values of variables instead of actual values.
Once a path is sclected, symbolic evaluation is used to
generate a path constraint, which consists of a set of
equalitics and inequalities on the prog

= Program Manager H!

File Options Window Help

c 5 : ¢ .-

FIEREENEGEY Control Panel Print Manager Clipboard MS-DOS
Viewer Prompt

2 @ S

Windows PIF Editor Read Me

Av® A V o
Accessornes Games StartUp WI n d OWS 3 1

The first use of genetic
algorithms for software
engineering problems is
usually attributed also to the
field of SBST, with the work
of Xanthakis et al., who
iINntroduced a genetic
algorithm to develop whole
test suites.

The first use of genetic algorithm to develop whole test

suites
1992
Application of genetic algorithms to software testing 2

S Xanthakis, C Ellis, C Skourias, A Le Gal, S Katsikas, K Karapoulios ‘
1992/12/7
Proceedings of the 5th Intermational Conference on Software Engineering and its Applications " "
25 69 The first suggestion of
search as a universal
D ey § B B approach to Software

Engineering

Formiaiy

Application of genetic algorithms

S Xanthakis CElls C S

{0 software testing

5. U Skourias, A Le Gall, S Katskas K Karacouios

19921127

Proceednas of the 5th intamational Conference on Software Engineerng and s Appications

Formally established as a filed of study with SBSE
2001

2

FLSEVIER

Search-based software engineering

Analysis of Trends in SBST

SBSE REPOSITORY

which address the software engineenng problems using metaheunstic search of sation
Algorithms) into the Repository of Publications on Search Based Software Engineering

« SBSE repository is maintained by Yuanyuan Zhang
* 1389 relevant publications are included
 Last updated on the 3 February 2015

« SBSE Authors on Google Scholar

The data is taken from the SBSE
Careful human-based update

100% precision and recall

Who’s Who ,
ICST'1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

y =0.0013x% - 0.061x> + 1.0008x? - 5.8636x + 10.443

/
H
S
X

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Polynomial yearly rise in
the number of papers
Search Based Software
Testing

v
c
o
k=
(0
—
0
=
(a
—
(7))
o0
(V)
S
o
-
v
QO
£
=
<
t
()
o)
(O
=
£
-
O
O
<

The changing ratio
SIBSIE [0 SIBST

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Q

B SBST Other SBSE Publications

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

SBST papers at ICST

Reformulating Branch Coverage as a Many-Objective Optimization Problem
Annibale Panichella, Fitsum Meshesha Kifetew and Paolo Tonella

Behind an Application Firewall, Are We Safe from SQL Injection Attacks?
Dennis Appelt, Cu D. Nguyen, Lionel Briand

Exploring Test Suite Diversification and Code Coverage in Multi-Objective Test Case Selection
Debajyoti Mondal, Hadi Hemmati, and Stephane Durocher

Guided Test Generation for Finding Worst-Case Stack Usage in Embedded Systems
Tingting Yu and Myra B. Cohen

Re-using Generators of Complex Test Data
Simon Poulding and Robert Feldt

U-Test: Evolving, Modelling and Testing Realistic Uncertain Behaviours of Cyber-Physical Systems
Shaukat Ali and Tao Yue

History-Based Test Case Prioritization for Black Box Testing using Ant Colony Optimization
Tadahiro Noguchi, Hironori Washizaki, Yoshiaki Fukazawa, Atsutoshi Sato and Kenichiro Ota

Combining Minimization and Generation for Combinatorial Testing
Itai Segall, Rachel Tzoref-Brill and Aviad Zlotnick.

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

,]
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Structural

/’ Ve —~ “ | " @ "\1.‘: 4 o g | . A | | |
71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Structural

find tests to
cover
branches,
statements &
dataflow, etc.

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Integration

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Integration

find
best component
ordering

P ‘

y

-/

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Temporal

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Temporal

find worst case
execution time

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

CIT

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

CIT

find 2-way, 3-way
n-way
interaction tests

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

SPLs

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

ICST'1 !; Achievements, Open Problems and Challenges for SBST

Mark Harman

Augment

find new tests
from old tests

il

ICST'1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Regression

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Regression

find good
subsets and
orders of tests

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Functional

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Mutation

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

State
based

¢
{

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Model
based

A

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Black box

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Failure
Analysis

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Security

r

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Web/

h' Services

Z

P
3.

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

Agents

71
ICST 1 !; Achievements, Open Problems and Challenges for SBST Mark Harman

SBST's Industrial Applications and Tools

fithess I .
Autononmous Parking Controller Fitness Function

parking maneuver
vehicle vehicle
Sensors Simulation Environment
Parking actor data vehicle Evolutioriary
Controller actors Algorithm sensor data actor data

environmental | environmental Parking parking space Toolbox
Sensors Space :
Detection Control Unit

parking space
geometry

; , Test Data Generator
Fig.2: System Environment and Sub-Components of the Autonomous Parking System individuals

Joachim Wegener and Oliver Buhler. GECCO 2004

DAIMLER

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

SBST's Industrial Applications and Tools

Table |

VARIABLES OF INTEREST FOR THE PREDICTION MODELS.

Fault in-flow

Abbreviation Category
F. in-flow Fault-inflow

No. of work packages planned for system integration | No. WP. PL. SI Status rank-

No. of work packages delivered to system integration | No. WP. DEL. SI
No. of work packages tested by system integration No. WP Tested. SI
No. of faults slipping through to all of the testing | No. FST

phases

ings of WPs

Residuals

No. of faults slipping through to the unit testing FST-Unit
No. of faults slipping through to the function testing FST-Func
No. of faults slipping through to the integration testing | FST-Integ
No. of faults slipping through to the system testing FST-Sys

system test cases planned
system test cases executed

interoperability test cases planned
interoperability test cases executed
network signaling test cases planned
network signaling test cases executed

Wasit Afzal, Richard Torkar,

No. System. TCs. PL | TC progress
No. System. TCs.

Exec. ‘

No. 10T TCs. PL

No. 10T TCs. Exec. |

.
PSO-ANN AIRS

GP MR

No. NS TCs. PL B (¢) Box plots of the residuals for each technique at the

. No. NS TCs. Exec.

Robert Feldt and Greger Wikstrand. SS

71
ICST 1 Achievements, Open Problems and Challenges for SBST

function testing phase.

35

- 2010

ERICSSON

Mark Harman

SBST's Industrial Applications and Tools

< LEVEL: 00.64 B ATTEMPTS: 1 @ vy = i O W 1serrines)
behavior —
Secret Impl Player Impl Player Implementation

) L _ class Player { | CAPTURE CODE |
~— %= Secret implementation public static int Puzzle(int x) { \
class Secret { return X;
public static int Puzzle(int x) { | v o ° o o
if (x <= 0) return 1; Program { _
= ’
Puzzle X, ' v 0 1] 1
return x * Puzzle(x-1); , 7 (2 ¥}
} | (x ™ Y 0) 0; 0 2 2 0 Mismatch
w X == 6%y =§) 1;
© @ Looking good. Look at line 8 to capture the code.
0:

class Test {
public static void Driver(int x) { |
if (Secret.Puzzle(x) != Player.Puzzle(x))
throw new Exception(“Mismatch”);

}

| } your res.:lt secret 1mplementatlon result Output Exceptlon

) R L BN
gp [p
£ X N O T N

Nikolai Tillmann, Jonathan de Halleux and Tao Xie. ASE 2014 Microsoft

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

SBST Public Tools

@ austin-sbst

AUgmented Search-based TestiNg

'Project Home' Downloads WiKi Issues Source

Summary People

Project Information AUSTIN is a structural test data generation tool (for unit tests) for the C language. | AU ST I\. ap p | |ed tO I’ea| —WOI’| d eIl bed d ed
project is to aid researchers in automated test data generation using search-based

Starred by 2 users supports a random search, as well as a simple hill climber that is augmented with a automotive Ind UStry: Daim cr, B&M

Project feeds

I N If you've downloaded AUSTIN, please let me know. If you are using AUSTIN as pa SyStem':eCh N | k ?ecom Men d ed fOr testi N g C

New BSD License then please use the following bibtex entry.

Labels @inproceedings {austin-lakhotia,

C, Ocaml, Academic, _ : :
Research, Tool Author = {Kiran Lakhotia and Mark Harman and Hamilton Gross},

52 Members Booktitle = {2nd International Symposium on Search Based Software Engineering},

Kiran.la...@gmail.com Pages = {101--110},

Kiran Lakhotia,Mark Harman,and Hamilton Gross. [&ST 2013

*UCL

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

SBST Public Tools

Ev=Suite

'/Test case number

iva
itException.java

i e : 1 N f\ E\;oSuite Test Generation: org.apache.commons.cli.Option EVOSUIte aUtOmatlcaHy generates teSt Cases
4 | Eosuite est sie generatr for Java code. An excellent and high
recommended tool.

iider.java
Always run in background
a

ptionException.ja

Details >> | Run in Background |

ina:YV: I12 Branch 17 IF_I(MPLE L.

Gordon Fraser and Andrea Arcuri. ESEC/FSE 2011

research laboratorv

The UNIVERSITAT |—=
University

oy o
'c \ o, ‘: ‘.,|
' X ¢ DES e
¥ N A
- "’. B (3

% -' Sheffield. SAARLANDES
71
ICST 1 !; Achievements, Open Problems and Challenges for SBST

Mark Harman

More detalls In the keynote paper
in your ICST proceedings

Achievements, open problems and challenges for
search based software testing

|CST’

Mark Harman, Yue Jia and Yuanyuan Zhang
University College London. CREST Centre, London, UK

Abstract—Search Based Software Testing (SBST) formulates
testing as an optimisation problem, which can be attacked using
computational search techniques from the field of Search Based
Software Engineering (SBSE). We present an analysis of the
SBST research agenda’, focusing on the open problems and chal-
lenges of testing non-functional properties, in particular a topic
we call *Search Based Energy Testing” (SBET), Multi-objective
SBST and SBST for Test Strategy Identification. We conclude
with a vision of FIFIVERIFY tools, which would automatically
find faults, fix them and verify the fixes. We explain why we
think such FIFIVERIFY tools constitute an exciting challenge for
the SBSE community that already could be within its reach.

RODUCTION

Search Based Software Testing (SBST) is the sub-area of
Search Based Software Engineering (SBSE) concerned with
software testing [2], [85]. SBSE uses computational search
techniques to tackle software engineering problems (testing
problems in the case of SBST), typified by large complex
search spaces [58]. Test objectives find natural counterparts
as the fitness functions used by SBSE to guide automated
search, thereby facilitating SBSE formulations of many (and
diverse) testing problems. As a result. SBST has proved to
be a widely a cable and effective way of generating test
data, and optimising the testing process. However, there are
many exciting challenges and opportunities that remain open
for further research and development. as we will show in this
paper.

It is widely believed that approximately half the budget
spent on software projects is spent on software testing. and
therefore, it is not surprising that perhaps a similar proportion
of papers in the software engineering literature are concerned
with software testing. We report an updated literature analysis
from which we observe that approximately half of all SBSE
papers are SBST papers. a figure little changed since the last
thorough publication audit (for papers up to 2009), which
found 54% of SBSE papers concemed SBST [56]. Many
excellent and detailed surveys of the SBST literature can be
found elsewhere [2]. [4]. [[85]). [126]. Therefore, rather
than attempting another survey, we provide an analysis of
SBST research trends. focusing on open challenges and areas
for future work and development.

1 by Mark Harn
. Verification and V

Achievements, Open Problems and Challenges for SBST

II. A BRIEF HISTORY OF SBS']

Since the first paper on SBST is also likely to be the first
paper on SBSE. the early history of SBST is also the early
history of SBSE. SBSE is a sub-area of software engineering
with origins stretching back to the 1970s but not formally
established as a field of study in its own right until 2001
[51]. and which only achieved more widespread acceptance
and uptake many years later [38]. [43]. [100].

T'he first mention of software optimisation (of any kind) is
almost certainly due to Ada Augusta Lovelace in 1842, Her
English language translation of the article (written in Italian
by Menabrae). “Sketch of the Analytical Engine Invented
by Charles Babbage' includes seven entries, labelled Note
A’ to ‘Note G' and initialed "A_A.L". Her notes constituted
an article themselves (and occupied three quarters of the
whole document). In these notes we can see perhaps the first
recognition of the need for software optimisation source
code analysis and manipulation (a point argued in more detail
elsewhere [44]):

“In almost every computation a great variery of
arrangements for the succession of the processes is
possible, and various considerations must influence
the selection amongst them for the purposes of
a Calculating Engine. One essential object is to
choose that arrangement which shall tend to reduce
to a minimum the time necessary for completing the
calculation.” Extract from “Note D’.

T'he introduction of the idea of software testing is probably
due to Turing [115]), who suggested the use of manually
constructed assertions. In his short paper, we can find the
origins of both software testing and software verification. The
first use of oprimisation techniques in software testing and
verification probably dates back to the seminal PhD thesis
by James King [67]. who used automated symbolic execution
to capture path conditions. solved using linear programming.
The first formulation of the test input space as a search
space probably dates back seven years earlier to 1962. when
a Cobol test data generation tool was introduced by Sauder
[103]. Sauder formulates the test generation problem as one
of finding test inputs from a search space. though the search
algonthm 1s random search, making this likely to be the first
paper on Random Test Data Generation. Sauder’'s work is
also significant because it introduces the idea of constraints
to capture path conditions, although these constraints are
manually defined and not automatically constructed.

Mark Harman

Achievements, open problems and challenges for
search based software testing

Mark Harman. Yue Jia and Yuanyuan Zhang
University College London, CR Centre, London, UK

bstract—Search Based Software Testing (SBST) formulates
testing as an optimisation problem, which can be attacked using
computational search techniques from the field of Search Based
Software Engineering (SBSE). We present an analysis of the
SBST research agenda |, focusing on the open problems and chal-
lenges of testing non-functional properties, in particular a topic
we call ‘Search Based Energy T BET), Multi-objective
SBST and SBST for Test Strategy Id fication. We conclude
with a vision of FIFIVER tools, which would automatically
find faults, fix them and verify the fixes. We explain why we
think such FIFIVERIFY tools constitute an exciting challenge for
the SBSE community that already could be within its reach.

I. INTRODUCTION

Search Based Software Testing (SBST) is the sub-area of
Search Based Software g (SBSE) concerned with
soft testing [2], [85]. SBSE uses computational search
techniques to tackle softy
problems in the case of SBST). typified by large complex

problems (testing

search spaces [58]. Test objectives find natural counterparts
as the fitness functions used by SBSE to guide automated
search, thereby facilitating SBSE formulations of many (and
blems. As a result. SBST has proved to

be a widely applicable and effective way of generating test

diverse) testing

data, and optimising the testing process. However. there are
many exciting challer and opportunities that remain open
for further research and development. as we will show in this
paper.

It is widely believed that approximately half the budget
spent on software projects is spent on software testing, and
therefore, it is not surprising that perhaps a similar proportion
of papers in the software engineering literature are conce
with software testing. We report an updated literature analysis
from which we observe that approximately half of all SBSE
papers are SBST papers. a figure little changed since the last
thorough publication audit (for papers up to 2009). which
found 54% of SBSE papers concemed SBST [56]. Many
excellent and detailed surveys of the SBST literature can be
found elsewhere [2]. [4]. [55]. [[126]. Therefore, rather
than attempting another survey, we provide an analysis of
SBST research trends, focusing on open challenges and areas
for future work and development.

temational

|CST’

II. A BRIEF HISTORY OF SBST

Since the first paper on SBST is also likely to be the first
paper on SBSE. the early history of SBST is also the
history of SBSE. SBSE is a sub-area of software g
with origins stretching back to the 1970s but not formally
established as a field of study in its own ht until 2001
[51]), and which only achieved more widespread acceptance
and uptake many years later [38]. [43]. [100]

The first mention of so, ¢ optimisation (of any kind) is
almost certainly due to Ada Augusta Lovelace in 1842, Her
English language translation of the article (written in Italian
by Menabr ‘Sketch of the Analytical Invented
by Charles Babbage' includes seven entries, labelled “Note
A’ to ‘Note G’ and initialed "A_A.L’. Her notes constituted
an article themselves (and occupied three quarters of the
whole document). In these notes we can see perhaps the first
recognition of the need for software optimisation and source
code analysis and manipulation (a point argued in more detail
elsewhere [44]):

“In almost every computation a great variety of

ements for the succession of the processes is

. and various considerations must influence

mgst them for the purposes of

a Calcu » Engine. One esse object is to

choose that arrangement which shall tend to reduce
fo a minimum the nime necessary for « "H."’H’L‘.'x‘

calculation.” Extract from “Note D’

The introduction of the idea of software testing is probably
due to Turing [115], who suggested the use
constructed assertions. In his short paper. we ¢

rins of both sofrware software

nrst use of oprimisanon tect ques 1 software testing and

verification probably dates back to the seminal PhD thesis
by James King [67]. who used automated symbolic execution
to capture path conditions. solved using linear programming.
The first formulation of the test input space as a search
space probably dates back seven years earlier to 1962, whe
a Cobol test data generation tool was introduced by Sau
[103]. Sauder formulates the test generation problem as one
of finding test inputs from a search space. though the rch
algorithm is random search. making this likely to be the first
paper on Random Test Data Generation. Sauder’s work is
also significant because it introduces the idea of constraints
to capture path conditions, although these constraints are
manually defined and not automatically constructed

SBST's Challenges

Testing (SBET).

technigues (MoSBarT).

Achievements, Open Problems and Challenges for SBST

We need to extend SBST to test non-functional properties.
In particular, we need more work on Search Based Energy

We need Search Based Test Strategy |dentification (SBTSI).

We need more work on multi-objective test data generation

Mark Harman

Achievements, open problems and challenges for
search based software testing

Mark Harman. Yue Jia and Yuanyuan Zhang
University College London, CR Centre, London, UK

bstract—Search Based Software Testing (SBST) formulates
testing as an optimisation problem, which can be attacked using
computational search techniques from the field of Search Based
Software Engineering (SBSE). We present an analysis of the
SBST research agenda |, focusing on the open problems and chal-
lenges of testing non-functional properties, in particular a topic
we call ‘Search Based Energy T BET), Multi-objective
SBST and SBST for Test Strategy Id fication. We conclude
with a vision of FIFIVER tools, which would automatically
find faults, fix them and verify the fixes. We explain why we
think such FIFIVERIFY tools constitute an exciting challenge for
the SBSE community that already could be within its reach.

I. INTRODUCTION

Search Based Software Testing (SBST) is the sub-area of
Search Based Software g (SBSE) concerned with
soft testing [2], [85]. SBSE uses computational search
techniques to tackle softy
problems in the case of SBST). typified by large complex

problems (testing

search spaces [58]. Test objectives find natural counterparts
as the fitness functions used by SBSE to guide automated
search, thereby facilitating SBSE formulations of many (and
blems. As a result. SBST has proved to

be a widely applicable and effective way of generating test

diverse) testing

data, and optimising the testing process. However. there are
many exciting challer and opportunities that remain open
for further research and development. as we will show in this
paper.

It is widely believed that approximately half the budget
spent on software projects is spent on software testing, and
therefore, it is not surprising that perhaps a similar proportion
of papers in the software engineering literature are conce
with software testing. We report an updated literature analysis
from which we observe that approximately half of all SBSE
papers are SBST papers. a figure little changed since the last
thorough publication audit (for papers up to 2009). which
found 54% of SBSE papers concemed SBST [56]. Many
excellent and detailed surveys of the SBST literature can be
found elsewhere [2]. [4]. [55]. [[126]. Therefore, rather
than attempting another survey, we provide an analysis of
SBST research trends, focusing on open challenges and areas
for future work and development.

temational

|CST’

II. A BRIEF HISTORY OF SBST

Since the first paper on SBST is also likely to be the first
paper on SBSE. the early history of SBST is also the
history of SBSE. SBSE is a sub-area of software g
with origins stretching back to the 1970s but not formally
established as a field of study in its own ht until 2001
[51]), and which only achieved more widespread acceptance
and uptake many years later [38]. [43]. [100]

The first mention of so, ¢ optimisation (of any kind) is
almost certainly due to Ada Augusta Lovelace in 1842, Her
English language translation of the article (written in Italian
by Menabr ‘Sketch of the Analytical Invented
by Charles Babbage' includes seven entries, labelled “Note
A’ to ‘Note G’ and initialed "A_A.L’. Her notes constituted
an article themselves (and occupied three quarters of the
whole document). In these notes we can see perhaps the first
recognition of the need for software optimisation and source
code analysis and manipulation (a point argued in more detail
elsewhere [44]):

“In almost every computation a great variety of

ements for the succession of the processes is

. and various considerations must influence

mgst them for the purposes of

a Calcu » Engine. One esse object is to

choose that arrangement which shall tend to reduce
fo a minimum the nime necessary for « "H."’H’L‘.'x‘

calculation.” Extract from “Note D’

The introduction of the idea of software testing is probably
due to Turing [115], who suggested the use
constructed assertions. In his short paper. we ¢

rins of both sofrware software

nrst use of oprimisanon tect ques 1 software testing and

verification probably dates back to the seminal PhD thesis
by James King [67]. who used automated symbolic execution
to capture path conditions. solved using linear programming.
The first formulation of the test input space as a search
space probably dates back seven years earlier to 1962, whe
a Cobol test data generation tool was introduced by Sau
[103]. Sauder formulates the test generation problem as one
of finding test inputs from a search space. though the rch
algorithm is random search. making this likely to be the first
paper on Random Test Data Generation. Sauder’s work is
also significant because it introduces the idea of constraints
to capture path conditions, although these constraints are
manually defined and not automatically constructed

SBST's Challenges

Testing (SBET).

technigues (MoSBarT).

Achievements, Open Problems and Challenges for SBST

We need to extend SBST to test non-functional properties.
In particular, we need more work on Search Based Energy

We need Search Based Test Strategy |dentification (SBTSI).

We need more work on multi-objective test data generation

Mark Harman

Achievements, open problems and challenges
search based software testing

Mark Harman, Yue Jia and Yuanyuan Zhang
University College London. CR Centre, London. UK

bstract—Search Based Software Testing (SBST) formulates
testing as an optimisation problem, which can be attacked using
computational search techniques from the field of Search Based
Software Engineering (SBSE). We present an analysis of the
SBST research agenda |, focusing on the open problems and chal-
lenges of testing non-functional properties, in particular a topic
we call ‘Search Based Energy T BET), Multi-objective
SBST and SBST for Test Strategy Id fication. We conclude
with a vision of FIFIVER tools, which would automatically
find faults, fix them and verify the fixes. We explain why we
think such FIFIVERIFY tools constitute an exciting challenge for
the SBSE community that already could be within its reach.

I. INTRODUCTION

Search Based Software Testing (SBST) is the sub-area of
Search Based Software Engineering (SBSE) concerned with
software testing [2], [85]. SBSE uses computational search
techniques to tackle softy
problems in the case of SBST). by large complex

problems (testing

search spaces [58]. Test objectives find natural counterparts
as the fitness functions used by SBSE to guide automated
search, thereby facilitating SBSE formulations of many (and
diverse) testing blems. As a result. SBST has proved to
be a widely applicable and effective way of generating test
data, and optimising the testing process. However. there are
many exciting challer and opportunities that remain open
for further research and development. as we will show in this
paper.

It is widely believed that approximately half the budget
spent on software projects is spent on software testing, and
therefore, it is not surprising that perhaps a similar proportion
of papers in the software engineering literature are concerned
with software testing. We report an updated literature analysis
from which we observe that approximately half of all SBSE
papers are SBST papers. a figure little changed since the last
thorough publication audit (for papers up to 2009). which
found 54% of SBSE papers concemed SBST [56]. Many
excellent and detailed surveys of the SBST literature can be
found elsewhere [2]. [4]. [55]. [[126]. Therefore, rather
than attempting another survey, we provide an analysis of
SBST earch trends, focusing on open challenges and areas
for future work and development.

temational

|CST’

II. A BRIEF HISTORY OF SBST

Since the first paper on SBST is also likely to be the first
paper on SBSE. the early history of SBST is also the
history of SBSE. SBSE is a sub-area of software neering
with origins stretching back to the 1970s but not formally
established as a field of study in its own ht until 2001
[51]), and which only achieved more widespread acceptance
and uptake many years later [38]. [43]. [100]

The first mention of software optir t (of any kind) 1s
almost certainly due to Ada Augusta Lovelace in 1842, Her
English language translation of the article (written in Italian
by Menabr *Sketch of the Analytical Invented
by Charles Babbage' includes seven entries, labelled “Note
A’ to ‘Note G’ and initialed "A_A.L’. Her notes constituted
an article themselves (and occupied three quarters of the
whole document). In these notes we can see perhaps the first
recognition of the need for software optimisation and source
code analysis and manipulation (a point argued in more
elsewhere [44]):

“In almost every computation a great variery
ements for the succession of the processes is
le, and various considerations must influence

mgst them for the purposes

a Calculating Engine. One esse object is to

J ’ J J | 100 7, 2112
choose that arrangement which shall tend to reduce

due to Turing [115], who suggested the use
constructed assertions. In his s

nrst use of oprimisanon iect ques 1 softwa
verification probably dates back to the seminal |
by James King [67]. who used automated symbolic execution
to capture path conditions. solved using linear programming.
The first formulation of the test input space as a search
space probably dates back seven years earlier to 1962, whe
a Cobol test data generation tool was introduced by Sau
[103]. Sauder formulates the test generation problem as one
of finding test inputs from a search space. though the
gorithm is random search, making this likely to be the first
r on Random Test Data Generation. Sauder’'s work is
also significant because it introduces the idea of constraints
to ca path conditions, although these constraints are
manu defined and not automatically constructed

SBST's Challenges

Testing (SBET).

technigues (MoSBarT).

Achievements, Open Problems and Challenges for SBST

We need to extend SBST to test non-functional properties.
In particular, we need more work on Search Based Energy

We need Search Based Test Strategy |dentification (SBTSI).

We need more work on multi-objective test data generation

Mark Harman

Achievements, open problems and challenges for
search based software testing

Mark Harman, Yue Jia and Yuanyuan Zhang

University College London. CRE

Abstract—Search Based Software Testing (SBST) formulates
testing as an optimisation problem, which can be attacked using
computational search techniques from the field of Search Based
Software Engineering (SBSE). We present an analysis of the
SBST research agenda ', focusing on the open problems and chal-
lenges of testing non-functional properties, in particular a topic
we call ‘Search Based Energy Testing” (SBET), Multi-objective
SBST and ¢ for Test Strategy Identification. We conclude
with a vision of FIFIVERIFY tools, which would automatically
find faults, fix them and verify the fixes. We explain why we
think such FIFIVERIFY tools constitute an exciting challenge for
the SBSE community that already could be within its reach.

I. INTRODUCTION

Search Based Software Testing (SBST) is the sub-area of
Search Based Software SBSE) concerned with
software testing [2], [¢ SBSE uses computational search
techniques to tackle software engineering problems (testing
problems in the case of SBST). typified by large complex
search spaces [58]. Test objectives find natural counterparts
SBSE to guide automated
search, thereby facilitating SBSE formulations of many (and
diverse) testing problems. As a result, SBST has proved to
be a widely applicable and effective way of generating test

as the fitness functions used b

data, and optimising the testing process. However. there are
many exciting challenges and opportunities that remain open
for further research and development. as we will show in this
paper.

It is widely believed that approximately half the budget
spent on software projects is spent on software testing, and
therefore, it is not surprising that perhaps a similar proportion
of papers in the software engineering literature are concerned
with software testing. We report an updated literature analysis
from which we observe that approximately half of all SBSE
papers are SBST papers. a figure little changed since the last
thorough publication audit (for papers up to 2009), which
found 54% of SBSE papers concemed SBST [56 lany
excellent and detailed surveys of the SBST literature can be
found elsewhere [2]. [4]. [55]. [[126]. Therefore, rather
than attempting another survey, we provide an analysis of
SBST research trends. focusing on open challenges and areas

Next Session:

|CST’

" Centre, London, UK

II. A BRIEF HISTORY OF SBST

Since the first paper on SBST is also likely to be the first
paper on SBSE. the early history of SBST is also th
history of SBSE. SBSE is a sub-area of software en;
with origins stretching back to the 1970s but not formally
established as a field of study in its own right untl 2001
[51). and
and uptake many years later [38]. [43]. [100]

hich only achieved more widespr

The first mention of sofn wion (of any kind) 1s

almost certainly due to Ada Augusta Lovelace in 1842, H

» ODTIM,
€ opiin

English language translation of the article (written in Itali
by Menabrae). “Sketch of the Analytical Engine
by Charles Babbage' includes seven entries, labelled
A’ to ‘Note G’ and initialed "A_A.L’. Her notes constituted
an article themselves (and occupied three quarters of the
whole document). In these notes we see perhaps the first
recognition of the need for software optimisation and source
code analysis and manipulation (a point argued in more detail
elsewhere [44]):
“In almost every computation a great variery of
nis for the succession of the processes is
. and various considerations must influence
t them for the purposes
oject I1s 1o

nd to reduce

um the nme necessary for co letir

Extract from ‘Note D’
The introduction of the idea of software tes
due to Turing [115], d the use of manually
constructed assertions. In his short paper, we can find the
ation. The

first use of oprimisation techniques in software testi and

ng is probably
who sugge
origins of both sofrware tes d software veri
verification probably dates back to the seminal PhD thesis
by James King [67]. who used automated symbolic execution
to capture path conditions. solved using linear programming.
The first formulation of the test input space as a sec
space probably dates back seven years earlier to 1962, wh

a Cobol test data
[103]. Sauder formulates the test generation problem as one

eration tool was introduced by Sauder

of finding test inputs from a search space. though the search
rorithm is random search, making this likely to be the first
per on Random Test Data Generation. Sauder’'s work is
also significant because it introduces the idea of constraints
to ca path conditions, although these constraints are
manually defined and not automatically constructed

Achievements, Open Problems and Challenges for SBST

SBST's Challenges

We need to extend SBST to test non-functional properties.

In particular, we need more work on Search Based Energy
Testing (SBET).

We need Search Based Test Strategy |dentification (SBTSI).

We need more work on multi-objective test data generation
technigues (MoSBarT).

Annibale Panichella, Fitsum Meshesha Kifetew and Paolo Tonella
Reformulating Branch Coverage as a Many-Objective Optimization Problem

Mark Harman

|CST’

SBST for Non-Functional Properties

Achievements, open problems and challenges
search based software testing

Mark Harman, Yue Jia and Yuanyuan Zhang

ersity College London, CREST Ce

Abstract—Search Based Software Testing (SBST) formulates
testing as an optimisation problem, which can be attacked using
computational search techniques from the field of Search Based
Software Engineering (SBSE). We present an analysis of the
SBST research agenda ', focusing on the open problems and chal-
lenges of testing non-functional properties, in particular a topic
we call *Search Based Energy Testing’ (SBET), Multi-objective
SBST and SBST for Test Strategy Identification. We conclude
with a vision of FIFIVERIFY tools, which would automatically
find faults, fix them and verify the fixes. We explain why we
think such FIFIVERIFY tools constitute an exciting challenge for
the SBSE community that already could be within its reach.

[. INTRODUCTION

Search Based Software Testing (SBST) is the sub-area of
Search Based Software Ei "BSE) concerned with
software testing [2], [85]. SBSE uses computational search

neering

techniques to tackle software engineering problems (testing
problems in the case of SBST), typified by large complex
search spaces [58]. Test objectives find natural counterparts
as the fitness functions used by SBSE to guide automated
search, thereby facilitating SBSE formulations of many (and
diverse) testing problems. As a result. SBST has proved to
be a widely applicable and effective way of generating test
data, and optimising the testing process. However, there are
many exciting challenges and opportunities that remain open
for further research and development. as we will show in this
paper.

It is widely believed that approximately half the budget
spent on software projects is spent on software testing, and
therefore, it is not surprising that perhaps a similar proportion
of papers in the software engineering literature are concerned
with software testing. We report an updated literature analysis
from which we observe that approximately half of all SBSE
papers are SBST papers. a figure little changed since the last
thorough publication audit (for papers up to 2009). which
found 54% of SBSE papers concemed SBST [56]. Many
excellent and detailed surveys of the SBST literature can be
found elsewhere [2]. [4]. [55]. [85]. [126]. Therefore, rather
than attempting another survey, an analysis of
SBST research trends. focusing on open challenges and areas

we prov

for future work and development.

This keynote was given by Mark Harman at the 8th IEEE Intemational
“onference on Soft [: ation (ICST 2015), but

[erification and t
which the ke as based, is the rk of al ¢ authors.

s paper, on

Achievements, Open Problems and Challenges for SBST

e, London, UK

II. A BRIEF HISTORY OF SBS']

Since the first paper on SBST is also likely to be the first
paper on SBSE. the early history of SBST is also the
history of SBSE. SBSE is a sub-area of software g
with origins stretching back to the 1970s but not formally
established as a field of study in its own right untl 2001
[51]), and which only achieved more widespread acceptance
and uptake many years later [38]. [43]. [100].

The first mention of software optimisation (of any kind) is
almost certainly due to Ada Augusta Lovelace in 1842, Her
English language translation of the article (written in Italian
by Menabrae). “Sketch of the Analytical Engine Invented
by Charles Babbage' includes seven entries, labelled “Note
A’ to "Note G’ and initialed "A_AL". Her notes constituted
an article themselves (and occupied three quarters of the
whole document). In these notes we can see perhaps the first
recognition of the need for software optimisation and source
code analysis and manipulation (a point argued in more detail
elsewhere [44]):

“In almost every computation a great variety of
arrangements for the succession of the processes is
3] ible. and 777 onsideration " t influenc
! OSSIDIE, dnd various considerarnions must minjiuence
the selection amongst them for the purposes of
a Calculating Engine. One essential object is to
[J Py Ll J > > 2 ;
choose that arrangement which shall tend to reduce

J
Iime necessary jor « '.'/I.',"A'{'.'l'l."" Ine

act from “Note D".

to a minimum the
calculation.” E

T'he introduction of the idea of software testing is probably
due to Turing [115], who suggested the use of manually
in find the
m. The
first use of optimisation techniques in software testing and
verification probably dates back to the seminal PhD thesis

constructed assertions. In his short paper, we ¢

origins of both software testing and software verifica

by James King [67]. who used automated symbolic execution
to capture path conditions. solved using linear programming.
The first formulation of the test mmput space as a search
space probably dates back seven years earlier to 1962, when
a Cobol test data generation tool was introduced by Sauder
[103]. Sauder formulates the test generation problem as one
of finding test inputs from a search space. though the search
algonthm is random search, making this likely to be the first
paper on Random Test Data Generation. Sauder’'s work is
also significant because it introduces the idea of constraints
to capture path conditions, although these constraints are
manually defined and not automatically constructed.

Mark Harman

SBST for Non-Functional Properties

=

=
00 -

(@)

Functinal Properties

4

L 1 1

1996 1998 2000 2002 2004 2006

Number of SBST Publication for Non-

Mark Harman,WasiiUfs za dRichargdidorKaaagd G5 b &0 Fel dixtedls 2024l et al 2009.

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

Scalability
5

6%

Robustness
10
12%

Flexibility
3

4%
Energy ™~

consumption
1
1%

—~—_

Efficiency
8
10%

Availability Safety Security
1 8 13
7 1% 9% Usability 15%
20% 10
12%

Security

The Categories of Non-Functional Properties from 1996 to 2007 The Categories of Non-Functional Properties from 1996 to 2014

Charijingadistributios BEWork

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

Search based Energy Test (SBET

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

&
-

Uh oh.

Search based Energy Test (SBET)
>

A smartphone could consume more energy
per year than a medium-sized refrigerator

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

Search based Energy Test (SBET)
>

A smartphone could consume more energy
per year than a medium-sized refrigerator

[T energy consumption rose 3% in 3 years

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

Search based Energy Test (SBET)

Measure energy consumption as a fitness function

Efficiency: will need to consider many different test cases

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

Search based Energy Test (SBET)

Efficiency: will need to consider many different test cases

Coarse Granularity: Energy consumed per run overall

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

Search based Energy Test (SBET)

L | | .
~ Efficiency: will need to consider many different test cases

SEsEEae® Coarse Granularity: Energy consumed per run overall

Hawthorne Effect: Instrumentation may affect energy consumed

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

Search based Energy Test (SBET)

Efficiency: will need to consider many different test cases

St Coarse Granularity: Energy consumed per run overal

u Hawthorne Effect: Instrumentation may atfect energy consumed

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

(P g e

1 OOARKR OR

39th COW - Measuring, Testing and Optimising Computational Energy Consumption

Search Based Test Strategy |dentification (SBTSI)

Move from finding specific inputs to finding strategies for finding inputs

of
5 T‘
.
~ i

A hyperheuristic SBSTH A co-evolutionary SBSTI

for CIT TR for Mutation testing
ICST'1 Achievements, Open Problems and Challenges for SBST Mark Harman

A hyperheuristic SBSTI

for CIT
CIT Solutions
AETG
IPOG GA

Simulated Annealing

1abu i Climbing

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

A hyperheuristic SBSTI

for CIT
AETG Specific structures
IPOG GA unconstrainted problems

Simulated Annealing |
constrainted problems

Tabu L
allin@liggleligle Weighted problems

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

A hyperheuristic SBSTI

for CIT
ARG Sp acific structures
IPOG GA unco‘nstrainted problems

Simulated Annealing |
constrainted problems

Tabu A
allin@liggleligle Weighted problems

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

A hyperheuristic SBSTI

for CIT
AETG Specific structures
IPOG GA “““‘..........,,%’LJnconstrainted problems

Simulated Annealing |
constrainted problems

Tabu A
allin@liggleligle Weighted problems

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

A hyperheuristic SBSTI

for CIT
CIT Solutions cil Prob_ler_n
Characteristics
AETG
IPOG GA Unknown CIT
Problems

Simulated Annealing

1abu i Climbing

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

A hyperheuristic SBSTH

for CIT
CIT Solutions cil Prob_ler_n
Characteristics
AETG
IPOG GA Unknown CIT
Problems

Simulated Annealing

1abu i Climbing

ICST'1 5 Achievements, Open Problems and Challenges for SBST

A hyperheuristic SBSTH
for CIT

CIT Problem

CIT Solutions Characteristics

‘b" a
\/
|CST'1 5 Achievements, Open Problems and Challenges for SBST ‘ ‘

Learning Combinatorial Interaction Test Generation Strategies using

Hyperheuristic Search. Yue Jia, Myra Cohen, Mark Harman and Justyna Petke.
ICSE 2015

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

Learning Combinatorial Interaction Test Generation Strategies using

Hyperheuristic Search. Yue Jia, Myra Cohen, Mark Harman and Justyna Petke.
ICSE 2015

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

A co-evolutionary approach for SBST]

Predator Prey
Testing Bugs

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

A co-evolutionary approach for SBST]

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

A co-evolutionary approach for SBST]

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

A co-evolutionary approach for SBST]

I CST' 1 Ach

ievements, Open Problems and Challenges for SBST Mark Harman

A co-evolutionary approach for SBST]

I CST' 1 Ach

ievements, Open Problems and Challenges for SBST Mark Harman

A co-evolutionary approach for SBST]

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

A co-evolutionary approach for SBST]

Evolving

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

A co-evolutionary approach for SBST]

I CST' 1 Ach

ievements, Open Problems and Challenges for SBST Mark Harman

A co-evolutionary approach for SBST]

I CST' 1 Ach

ievements, Open Problems and Challenges for SBST Mark Harman

A co-evolutionary approach for SBST]

I CST' 1 Ach

ievements, Open Problems and Challenges for SBST Mark Harman

A co-evolutionary approach for SBST]

Evolving

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

A co-evolutionary approach for SBST]

I CST' 1 Ach

ievements, Open Problems and Challenges for SBST Mark Harman

A co-evolutionary approach for SBST]

Test data Higher order mutants

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

Multi-Objective Search Based Testing (MOSBAT)

iIncreasingly prevalent
regression testing was early adopter

e.g. Yoo and Harman: ISSTA 2007

, MOSBAT
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

Multi-Objective Search Based Testing (MOSBAT

space(zoomed)

:lll.lll.lllll

1.0(
0.85
0.90

. 0.85
+ Weighted-sum Add. Greedy - e e 0.80

X Reference : : 0.75

Fault Coverage
Code Coverage

. 0.70
: . o 0.65
e+00 2e+04 4e+d4 Be+04 8e+04 1e+05 Oe+00 2e+'§4 4de+04 6e+04 8e+04 1e+05

Cost Cost

|ICST'1

Achievements, Open Problems and Challenges for SBST Mark Harman

Multi-Objective Search Based Testing (MOSBAT)

Coverage

T

est data
Generation

test case generation
s still mostly single objective

, MOSBAT
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

Multi-Objective Search Based Testing (MOSBAT)

|ICST'15 acn

ievements, Open Problems and Challenges for SBST Mark Harman

Multi-Objective Search Based Testing (MOSBAT)

Usability < > Security

Multi-objective Understanding:
Debug Security policies

, MOSBAT
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

Achievements, open problems and challenges
search based software testing

Mark Harman, Yue Jia and Yuanyuan Zhang
University College London. CR Centre, London. UK

bstract—Search Based Software Testing (SBST) formulates
testing as an optimisation problem, which can be attacked using
computational search techniques from the field of Search Based
Software Engineering (SBSE). We present an analysis of the
SBST research agenda |, focusing on the open problems and chal-
lenges of testing non-functional properties, in particular a topic
we call ‘Search Based Energy T BET), Multi-objective
SBST and SBST for Test Strategy Id fication. We conclude
with a vision of FIFIVER tools, which would automatically
find faults, fix them and verify the fixes. We explain why we
think such FIFIVERIFY tools constitute an exciting challenge for
the SBSE community that already could be within its reach.

I. INTRODUCTION

Search Based Software Testing (SBST) is the sub-area of
Search Based Software Engineering (SBSE) concerned with
software testing [2], [85]. SBSE uses computational search
techniques to tackle softy
problems in the case of SBST). by large complex

problems (testing

search spaces [58]. Test objectives find natural counterparts
as the fitness functions used by SBSE to guide automated
search, thereby facilitating SBSE formulations of many (and
diverse) testing blems. As a result. SBST has proved to
be a widely applicable and effective way of generating test
data, and optimising the testing process. However. there are
many exciting challer and opportunities that remain open
for further research and development. as we will show in this
paper.

It is widely believed that approximately half the budget
spent on software projects is spent on software testing, and
therefore, it is not surprising that perhaps a similar proportion
of papers in the software engineering literature are concerned
with software testing. We report an updated literature analysis
from which we observe that approximately half of all SBSE
papers are SBST papers. a figure little changed since the last
thorough publication audit (for papers up to 2009). which
found 54% of SBSE papers concemed SBST [56]. Many
excellent and detailed surveys of the SBST literature can be
found elsewhere [2]. [4]. [55]. [[126]. Therefore, rather
than attempting another survey, we provide an analysis of
SBST earch trends, focusing on open challenges and areas
for future work and development.

temational

|CST’

II. A BRIEF HISTORY OF SBST

Since the first paper on SBST is also likely to be the first
paper on SBSE. the early history of SBST is also the
history of SBSE. SBSE is a sub-area of software neering
with origins stretching back to the 1970s but not formally
established as a field of study in its own ht until 2001
[51]), and which only achieved more widespread acceptance
and uptake many years later [38]. [43]. [100]

The first mention of software optir t (of any kind) 1s
almost certainly due to Ada Augusta Lovelace in 1842, Her
English language translation of the article (written in Italian
by Menabr *Sketch of the Analytical Invented
by Charles Babbage' includes seven entries, labelled “Note
A’ to ‘Note G’ and initialed "A_A.L’. Her notes constituted
an article themselves (and occupied three quarters of the
whole document). In these notes we can see perhaps the first
recognition of the need for software optimisation and source
code analysis and manipulation (a point argued in more
elsewhere [44]):

“In almost every computation a great variery
ements for the succession of the processes is
le, and various considerations must influence

mgst them for the purposes

a Calculating Engine. One esse object is to

J ’ J J | 100 7, 2112
choose that arrangement which shall tend to reduce

due to Turing [115], who suggested the use
constructed assertions. In his s

nrst use of oprimisanon iect ques 1 softwa
verification probably dates back to the seminal |
by James King [67]. who used automated symbolic execution
to capture path conditions. solved using linear programming.
The first formulation of the test input space as a search
space probably dates back seven years earlier to 1962, whe
a Cobol test data generation tool was introduced by Sau
[103]. Sauder formulates the test generation problem as one
of finding test inputs from a search space. though the
gorithm is random search, making this likely to be the first
r on Random Test Data Generation. Sauder’'s work is
also significant because it introduces the idea of constraints
to ca path conditions, although these constraints are
manu defined and not automatically constructed

SBST's Challenges

Testing (SBET).

technigues (MoSBarT).

Achievements, Open Problems and Challenges for SBST

We need to extend SBST to test non-functional properties.
In particular, we need more work on Search Based Energy

We need Search Based Test Strategy |dentification (SBTSI).

We need more work on multi-objective test data generation

Mark Harman

Let me ask you something ...

, MOSBAT
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

Genetic Improvement:
searching for
improving modifications
guided by testing

e

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

Genetic Improvement of Programs

Sensitivity . \ =n
) Analysis | | GPp |————3!|| Bowtie2
Tost \) 1 Improved
data .
Fithess
f , \ /0 times faster
Non-functional 4 ,
sroperty Test 30+ interventions
harness HC clean up: /

slight semantic improvement

W. B. Langdon and M. Harman
Optimising Existing Software with Genetic Programming. TEC 2015

e

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

Genetic Improvement of Programs

|ICST'1

Sensitivity
Analysis

-

Non-functional
property lest
harness

~N

> GP

Fithess

_J

Achievements, Open Problems and Challenges for SBST

e

Mark Harman

Genetic Improvement of Programs

Cuda

Sensitivity
Analysis

-

Non-functional
property lest
harness

~N

W. B. Langdon and M. Harman
Genetically Improved CUDA C++ Software, EuroGP 2014

|ICST'1

) |

GP ||| Cuda
) || Improved

Fithess

/ times faster
updated for new hardware
automated updating

e

Achievements, Open Problems and Challenges for SBST Mark Harman

Inter version transplantation

|ICST'1

Sensitivity
Analysis

-

Non-functional
property lest
harness

~N

> GP

Fithess

_J

Achievements, Open Problems and Challenges for SBST

e

Mark Harman

Inter version transplantation

GP

————————[| MiniSat

Fithess

|| Improved

Multi-doner transplant

Specialized for CIT
| 7% faster

Justyna Petke, Mark Harman,William B. Langdon and Westley VWeimer
Using Genetic Improvement & Code Transplants to Specialise a C++ program

v
L 4)
MITINEYS
Sensitivity
v2 Analysis
. . —
MITIINEYS
_ J
vh Test
MiniSat data
.
Non-functional
property lest
harness
_
to a Problem Class (EuroGP’[4)
ICST'1 Achievements, Open Problems and Challenges for SBST

e

Mark Harman

Real world cross system transplantation

-------- Sensitivity . \ el

Analysis GP *
ness

——————— : Test
data @
Non-functional]

property lest
harness

e

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

Real world cross system transplantation

Doner

feature

Host

—arl

Sensitivity
Analysis

J

B —

=

-

Non-functional
property lest
harness

~N

-

N

Host’
feature

Test
data @
) autotransplanted new

o N
NEsS
Successfully
functionality and passed all

regression tests for 12 out of
15 real world systems

. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke
Automated Software Transplantation (Tech Report). To appear.

e

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

Memory speed trade offs

-------- Sensitivity . \ el

Analysis GP *
ness

——————— : Test
data @
Non-functional]

property lest
harness

e

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

Memory speed trade offs

System () System
Sensitivity - .
malloc Analysis —)optimised
. J malloc
Test
data
Fitness
Improve execution time by
4 \ 0O o
Non-functional 12% or achieve a 21%
property Test memory consumption
. harness reduction

-an Wu, Westley Weimer, Mark Harman, Yue Jia and Jens Krinke
Deep Parameter Optimisation
Conterence on Genetic and Evolutionary Computation (GECCO'15), To appear

e

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

Memory speed trade offs

System System
Sensitivity . \
Malloc Analysis J|optimised
. y malloc
Test
data
TR Fitness
e~ e
ﬁ, Wk Improve execution time by
w2 " Non-functional “ 12% or achieve a 21%
' property Test memory consumption
) ~ harness reduction

Fan Wu, Westley Weimer, Mark Harman, Yue Jia and Jens Krinke
Deep Parameter Optimisation

Conference on Genetic and Evolutionary Computation (GECCO'15), To appear

el B

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

|ICST'1

Reducing energy consumption

Sensitivity
Analysis

J

-

Non-functional
property lest
harness

~N

4)

> GP
/
NESS

=

Test
data Q
Fit

Achievements, Open Problems and Challenges for SBST

e

Mark Harman

Reducing energy consumption

MiniSat Improved MiniSat
.;IT Sensitivity . \ I T TMiTEat
MiniSat Analysis cp mproved MiniSa
Ensemble \) > > Ensemble
MiniSat ’ Improved MiniSat
AProVE ness AProVE

Test
data @
Non-functional]

property Test Energy consumption can pe
harness reduced by as much as 25%

_ J

Bobby R. Bruce Justyna Petke Mark Harman
Reducing Energy Consumption Using Genetic Improvement
Conference on Genetic and Evolutionary Computation (GECCO'15), To appear

e

71
ICST 1 Achievements, Open Problems and Challenges for SBST Mark Harman

Grow and graft new functionality

|ICST'1

Sensitivity
Analysis

J

-

Non-functional
property lest
harness

~N

4)

— GP
J
ness

=

Test
data Q
Fit

Achievements, Open Problems and Challenges for SBST

e

Mark Harman

Grow and graft new functionality

Grow
Human
—_— e
Knowledge GP Feature
Test
data
Non-functional
property lest
harness
Mark Harman, Yue Jia and Bill Langdon,

Babel Pidgin: SBS

Symposium on Search-Based Software

|CST

Sensitivity
—— Analysis

_

~

)y

J

GP
@
data Q
Fithess

Non-functional
property Test
harness

- can g

i

Graft

J

'ow and graft entirely new functionality into a real world system

—ngineering SSBS

Achievements, Open Problems and Challenges for SBST

= 2014. (Challenge track)

Mark Harman

Host System

Feature

The GISMOE challenge:
Constructing the Pareto Program Surface Using Genetic
Programming to Find Better Programs:

Mark Harman’, William B. Langdon’, Yue Jia*, David R. White*, Andrea Arcuri*, John A. Clark:
*CREST Centre, University College London, Gower Street, London, WC1E 6BT, UK.
*School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
*Simula Research Laboratory, P. O. Box 134, 1325 Lysaker, Norway.
‘Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK.

ABSTRACT

Optimising programs for non-functional properties such as
speed, size, throughput, power consumption and bandwidth
can be demanding; pity the poor programmer who is asked
to cater for them all at once! We set out an alternate vi-
sion for a new kind of software development environment
inspired by recent results from Search Based Software Engi-
neering (SBSE). Given an input program that satisfies the
functional requirements, the proposed programming envi-
ronment will automatically generate a set of candidate pro-
gram implementations, all of which share functionality, but
each of which differ in their non-functional trade offs. The
software designer navigates this diverse Pareto surface of
candidate implementations, gaining insight into the trade
offs and selecting solutions for different platforms and en-
vironments, thereby stretching beyond the reach of current
compiler technologies. Rather than having to focus on the
details required to manage complex, inter-related and con-
flicting, non-functional trade offs, the designer is thus freed
to explore, to understand, to control and to decide rather
than to construct.

Categories and Subject Descriptors

D.2 [Software Engineering|

General Terms

Algorithms, Design, Experimentation, Human Factors, Lan-
guages, Measurement, Performance, Verification.

he xeynole gi by Mark Har-

rnational Co ce on Auto

Sof Engineering E 12) in Essen, Germany. It is joint

work with [Langdon, Yu a, David White, Andrea Arcuri and

John Clark, funded by the EPSRC grants SEBASE (EP/DO050863,

EP/DOSG1IS and EP/DOS2785), GISMO (EP/1033688) and DAASE
(EP/J017515/) and by EU project FITTEST (2! -

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee

ASE'12, September 3-7, 2012, Essen, Germany.

Copyright 2012 ACM XXX-X-XXXX-XXXX-date ...515.00,

Keywords

SBSE, Search Based Optimization, Compilation, Non-functional

Properties, Genetic Programming, Pareto Surface.

1. INTRODUCTION

Humans find it hard to develop systems that balance many
competing and conflicting non-functional objectives. Even
meeting a single objective, such as execution time, requires
automated support in the form of compiler optimisation.
However, though most compilers can optimise compiled code
for both speed and size, the programmer may find them-
sclves making arbitrary choices when such objective are in
conflict with one another.

Furthermore, speed and size are but two of many objec-
tives that the next generation of software systems will have
to consider. There are many others such as bandwidth,
throughput, response time, memory consumption and re-
source access. It is unrealistic to expect an engineer to de-
cide, up front, on the precise weighting that they attribute
to each such non-functional property, nor for the engineer
even to know what might be achievable in some unfamiliar
environment in which the system may be deployed.

Emergent computing application paradigms require sys-
tems that are not only reliable, compact and fast, but which
also optimise many different competing and conflicting ob-
jectives such as response time, throughput and consumption
of resources (such as power, bandwidth and memory). As
a result, operational objectives (the so-called non-functional
properties of the system) are becoming increasingly impor-
tant and uppermost in the minds of software engineers.

Human software developers cannot be expected to opti-
mally balance these multiple competing constraints and may
miss potentially valuable solutions should they attempt to
do so. Why should they have to? How can a programmer
assess (at code writing time) the behaviour of their code
with regard to non-functional properties on a platform that
may not yet have been built?

To address this conundrum we propose a development en-
vironment that distinguishes between functional and non-
functional properties. In this environment, the functional
properties remain the preserve of the human designer, while
the optimisation of non-functional properties is left to the
machine. That is, the choice of the non-functional proper-
ties to be considered will remain a decision for the human
software designer.

|CST'

Another keynote paper

at ASE 2012

Achievements, Open Problems and Challenges for SBST

Mark Harman

Pareto Front

Pareto Front

5 each circle is a
o brogram found
5 by a machine

Pareto Front

O different non
functional
0O broperties have
different pareto
brogram fronts

Test Cases

Why can't functional properties
be optimisation objectives !

A\ v u - Ny
R) 5 ~ [
S - 4 1 . .
- 1 p e 3
R . ;! . 1 A 3 »
V' » £ G (4 9 5o
* 1
J 0 1 > 3
W
a <y 1 .

b.‘i . . T — ‘ §

Optimisation

, A
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

Optimisation

Failed Test Cases

2.5 times faster but A
failed | test case! I

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

Optimisation

Failed Test Cases

double the battery life
but failed 2 test cases!?

&
71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

Achievements, open problems and challenges for
search based software testing

Mark Harman, Yue Jia and Yuanyuan Zhang
University College London, CREST Centre, London, UK

Abstract—Search Based Software Testing (SBST) formulates
testing as an optimisation problem, which can be attacked using
computational search techniques from the field of Search Based
Software Engineering (SBSE). We present an analysis of the
SBST research agenda |, focusing on the open problems and chal-
lenges of testing non-functional properties, in particular a topic
we call ‘Search Based Energy Testing' (SBET), Multi-objective
SBST and SBST for Test Strategy Identification. We conclude
with a vision of FIFIVERIFY tools, which would automatically
find faults, fix them and verify the fixes. We explain why we
think such FIFIVERIFY tools constitute an exciting challenge for
the SBSE community that already could be within its reach.

[. INTRODUCTION

Search Based Software Testing (SBST) is the sub-area of
Search Based Software Engineering (SBSE) concerned with
software testing [2], [85]). SBSE uses computational search
techniques to tackle software engineering problems (testing
problems in the case of SBST), typified by large complex
search spaces [58]. Test objectives find natural counterparts
as the fitness functions used by SBSE to guide automated
search, thereby facilitating SBSE formulations of many (and
diverse) testi roblems. As a result. SBST has pro
be a widely applicable and effective way of generating test
data, and optimising the testing process. However, there are
many exciting challenges and opportunities that remain open
for further research and development. as we will show in this
paper.

It is widely believed that approximately half the budget
spent on software projects is spent on software testing, and
therefore, it is not surprising that perhaps a similar proportion
of papers in the software engineering literature are concerned
with software testing. We report an updated literature analysis
from which we observe that approximately half of all SBSE
papers are SBST papers. a figure little changed since the last
thorough publication audit (for papers up to 2009). which
found 54% of SBSE papers concemed SBST [56]. Many
excellent and detailed surveys of the SBST literature can be
found elsewhere [2]. [4]. [55]. [85]). [126]. Therefore, rather
than attempting another survey, we provide an analysis of
SBST research trends, focusing on open challenges and areas
for future work and development.

nal
2015). but

ree authors.

|CST’

II. A BRIEF HISTORY OF SBS'1

Since the first paper on SBST is also likely to be the first
paper on SBSE. the early history of SBST is also the early
history of SBSE. SBSE is a sub-area of software engineering
with origins stretching back to the 1970s but not formally
established as a field of study in its own night untl 2001
[51], and which only achieved more widespread acceptance
and uptake many years later [38]. [43]. [100]).

I'he first mention of software optimisation (of any kind) is
almost certainly due to Ada Augusta Lovelace in 1842, Her
English language translation of the article (written in Ital
by Menabrae). “Sketch of the Analytical Engine Invented
by Charles Babbage' includes seven entries, labelled “Note
A’ to ‘Note G’ and initialed "A_AL". Her notes constituted
an article themselves (and occupied three quarters of the
whole document). In these notes we can see perhaps the first
recognition of the need for software optimisation and source
code analysis and manipulation (a point argued in more detail
elsewhere [44]):

“In almost every computation a great variety of
arrangements for the succession of the processes is
possible, and various considerations must influence
the selection amongst them for the purposes of
a Calculating Engine. One essential object is to
choose that arrangement which shall tend to reduce
to a minimum the time necessary for ¢ ompleting the

Extract from “Note D".

I'he introduction of the idea of software testing i1s probably
due to Turing [115]. who suggested the use of manually
constructed assertions. In his short paper, we can find the
origins of both sofrware testing and software verification. The
first use of oprimisation techniques In software testing and
verification probably dates back to the seminal PhD thesis
by James King [67]. who used automated symbolic execution
to capture path conditions. solved using linear programming.
T'he first formulation of the test input space as a search
space probably dates back seven years earlier to 1962, when
a Cobol test data generation tool was introduced by Sauder
[103]. Sauder formulates the test generation problem as one
of finding test inputs from a search space. though the search
algonthm is random search, making this likely to be the first
paper on Random Test Data Generation. Sauder’'s work is
also significant because it introduces the idea of constraints
to capture path conditions, although these constraints are
manually defined and not automatically constructed.

Achievements, Open Problems and Challenges for SBST

Summary

Isn’t testing all about searching?

Searching for test cases
Searching for test application orders
Searching for patches

Searching for better programs guided by tests
enetic Improvement

Mark Harman

Achievements, open problems and challenges for
search based software testing

Mark Harman, Yue Jia and Yuanyuan Zhang
University College London, CREST Centre, London, UK

Abstract—Search Based Software Testing (SBST) formulates
testing as an optimisation problem, which can be attacked using
computational search techniques from the field of Search Based
Software Engineering (SBSE). We present an analysis of the
SBST research agenda |, focusing on the open problems and chal-
lenges of testing non-functional properties, in particular a topic
we call ‘Search Based Energy Testing' (SBET), Multi-objective
SBST and SBST for Test Strategy Identification. We conclude
with a vision of FIFIVERIFY tools, which would automatically
find faults, fix them and verify the fixes. We explain why we
think such FIFIVERIFY tools constitute an exciting challenge for
the SBSE community that already could be within its reach.

[. INTRODUCTION

Search Based Software Testing (SBST) is the sub-area of
Search Based Software Engineering (SBSE) concerned with
software testing [2], [85]). SBSE uses computational search
techniques to tackle software engineering problems (testing
problems in the case of SBST), typified by large complex
search spaces [58]. Test objectives find natural counterparts
as the fitness functions used by SBSE to guide automated
search, thereby facilitating SBSE formulations of many (and
diverse) testi roblems. As a result. SBST has pro
be a widely applicable and effective way of generating test
data, and optimising the testing process. However, there are
many exciting challenges and opportunities that remain open
for further research and development. as we will show in this
paper.

It is widely believed that approximately half the budget
spent on software projects is spent on software testing, and
therefore, it is not surprising that perhaps a similar proportion
of papers in the software engineering literature are concerned
with software testing. We report an updated literature analysis
from which we observe that approximately half of all SBSE
papers are SBST papers. a figure little changed since the last
thorough publication audit (for papers up to 2009). which
found 54% of SBSE papers concemed SBST [56]. Many
excellent and detailed surveys of the SBST literature can be
found elsewhere [2]. [4]. [55]. [85]). [126]. Therefore, rather
than attempting another survey, we provide an analysis of
SBST research trends, focusing on open challenges and areas
for future work and development.

nal
2015). but

ree authors.

|CST’

II. A BRIEF HISTORY OF SBS'1

Since the first paper on SBST is also likely to be the first
paper on SBSE. the early history of SBST is also the early
history of SBSE. SBSE is a sub-area of software engineering
with origins stretching back to the 1970s but not formally
established as a field of study in its own night untl 2001
[51], and which only achieved more widespread acceptance
and uptake many years later [38]. [43]. [100]).

I'he first mention of software optimisation (of any kind) is
almost certainly due to Ada Augusta Lovelace in 1842, Her
English language translation of the article (written in Ital
by Menabrae). “Sketch of the Analytical Engine Invented
by Charles Babbage' includes seven entries, labelled “Note
A’ to ‘Note G’ and initialed "A_AL". Her notes constituted
an article themselves (and occupied three quarters of the
whole document). In these notes we can see perhaps the first
recognition of the need for software optimisation and source
code analysis and manipulation (a point argued in more detail
elsewhere [44]):

“In almost every computation a great variety of
arrangements for the succession of the processes is
possible, and various considerations must influence
the selection amongst them for the purposes of
a Calculating Engine. One essential object is to
choose that arrangement which shall tend to reduce
to a minimum the time necessary for ¢ ompleting the

Extract from “Note D".

I'he introduction of the idea of software testing i1s probably
due to Turing [115]. who suggested the use of manually
constructed assertions. In his short paper, we can find the
origins of both sofrware testing and software verification. The
first use of oprimisation techniques In software testing and
verification probably dates back to the seminal PhD thesis
by James King [67]. who used automated symbolic execution
to capture path conditions. solved using linear programming.
T'he first formulation of the test input space as a search
space probably dates back seven years earlier to 1962, when
a Cobol test data generation tool was introduced by Sauder
[103]. Sauder formulates the test generation problem as one
of finding test inputs from a search space. though the search
algonthm is random search, making this likely to be the first
paper on Random Test Data Generation. Sauder’'s work is
also significant because it introduces the idea of constraints
to capture path conditions, although these constraints are
manually defined and not automatically constructed.

Achievements, Open Problems and Challenges for SBST

Summary

Isn’t testing all about searching?

Searching for test cases
Searching for test application orders
Searching for patches

Searching for better programs guided by tests
enetic Improvement

Mark Harman

Picture Copyrights

http://en.wikipedia.org/wiki/Thomas_Edison#/media/File:Edison_bulb.jpg

http://en.wikipedia.org/wiki/Colossus _computer#/media/File:Colossus.jpg

http://en.wikipedia.org/wiki/Hippie#/media/File:Woodstock-kids.jpg
http://beatles.wikia.com/wiki/The_Beatles_Wiki

71
ICST 1 5 Achievements, Open Problems and Challenges for SBST Mark Harman

http://en.wikipedia.org/wiki/Colossus_computer#/media/File:Colossus.jpg

